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Electric Propulsion provides an appealing alternative to chemical boosters for long
duration missions and for station keeping purposes due to its high Isp and low propel-
lant consumption. However, electric thrusters lack sufficient flight heritage, resulting in
a costly and time-consuming experimental testing of new concepts. Currently 3D com-
puter particle simulations are increasingly being used in the design and testing of electric
propulsion devices. Various simulation models exist (Particle-In-Cell, Direct Simulation
Monte Carlo, etc...), but all tend to produce large three-dimensional datasets. The de-
velopment of the CAPLab Virtual Testing Environment (capVTE) was initiated by the
need to effectively visualize and interpret such results. The software creates a virtual
environment, through which the user can move and investigate the results from various
angles, as well as study the time dependent behavior. A full integration with the CAVE
immersed environment will produce a virtual vacuum tank, allowing multiple interested
parties to walk through the 3D dataset, witness the flow of the particles in real time
and obtain a better understanding of flow properties by defining isosurfaces and cutting
planes through the computational domain. The software is currently used to visualize
results from the Deep Space 1 NSTAR ion thruster plume and NSTAR ion optics.

Introduction

The flight of NASA’s Deep Space 1 mission, which
relied on an NSTAR ion engine for its main source of
thrust, demonstrated that electric propulsion is a fea-
sible alternative to chemical boosters. However, this
technology lacks the flight heritage of chemical rockets,
and extensive testing is required before it can reach a
more widespread application. Experimental testing is
however very inefficient, as it requires both the man-
ufacture of the model, as well as the lengthy run in
a vacuum chamber. Hence, large scale 3D computer
plasma simulations are being used more frequently in
the design and testing stages of the thruster devel-
opment. However, such simulations usually create a
large set of three dimensional data that is difficult to
comprehend without the help of powerful visualization
tools.

This paper outlines the visualization tools being
employed by the Virginia Tech’s Computational Ad-
vanced Propulsion (CAP) Laboratory. CAP Lab spe-
cializes in computer simulation of ion thrusters, and
the visual processing of the respective data. Visualiza-
tion is performed on a wide variety of hardware plat-
forms, ranging from high-end PCs, through SUN and
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SGI machines to the 3D projection system called the
CAVE. The bulk of this paper, however, concentrates
on the software side of the visualization process. Two
visualization packages are described. First of these,
Diverse, is a scalable framework which can handle ren-
dering and data input on a wide variety of hardware
platforms, thanks to the dynamically loaded shared
objects. Its data processing capabilities are very lim-
ited, which led to the development of capVTE, CAP
Lab Virtual Testing Environment. This program as
well as two examples demonstrating its use are de-
scribed here in a greater detail.

Visualization Tools
CAVE

The CAVE is an immersed, walk-in 3D visualization
tool. From the physical perspective, it is a “cube”
missing the front and the top face, with a 73.5x84
inch footprint and a 104-inch high ceiling. The three
side faces along with the floor act as screens, on which
an image is projected from four Electrohome Marquis
8000 projectors. The false-color images are shifted
such that, when viewed using the CrystalEyes gog-
gles, they create a perception of the visualized object
floating in the center of the cube.

The CAVE can accommodate several people at one
time, however, only one user wears the tracking head-
set. Its position and view angle is tracked by an array
of sensors. The central computer then adjusts the pro-
jections to create a realistic image. Further control can
be accomplished using a hand-held wand. Its transla-
tion as well as rotation are both tracked, and thus the
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wand can act as a virtual pointer. A small joystick
located on the wand allows the user to travel greater
distances that allowed by the limited physical size of
the CAVE.

Diverse

Diverse1 (Device Independent Virtual Environment
Reconfigurable Scalable Extensible) is a collection of
software, Application Programming Interfaces (APIs)
developed at Virginia Tech by the University Visual-
ization and Animation Group. It is written in C++
and runs on GNU/Linux and SGI IRIX systems. Di-
verse is a free software and is distributed under the
licenses LGPL for the libraries and GPL for the soft-
ware. Diverse can display programs in the CAVE,
Immersa Desk, Head Mounted Display (HMD) and
desktop or a laptop. It consists of three major compo-
nents:

• Diverse graphics interface for Performer or DPF,
uses OpenGL Performer to implement 3D Virtual
Environment applications.

• Diverse GL or DGL, supports rendering with the
OpenGL programming interface.

• Diverse ToolKit or DTK, allows DPF and DGL
to access local and networked interaction devices.

The flexibility of Diverse comes from its use of
dynamically-loaded shared objects(DSO’s). The Di-
verse program provides just the general framework,
onto which additional objects can be loaded as needed.
Several DSO’s exist, but these are mostly helper ap-
plications, adding features such as a wand flashlight
to the CAVE. Diverse can display 3D objects defined
as a polygonal structure, but it does not provide any
support for data processing. Although it would be
possible to write a DSO managing data processing,
a simpler solution was writing a visualization appli-
cation from scratch, but utilizing an already existing
data processing library. This led to the creation of
capVTE, which is described in a greater detail in the
following section.

CapVTE

The primary data output produced by a computer
plasma simulation is often the distribution of some
variable, such as φ or ρ, through the domain. Such an
output is usually incomprehensible in its raw form, and
must be processed using some visual tools into a more
human-friendly format. The large variety of available
hardware resources at Virginia Tech inevitably led to
a great variety of available supporting software. The
software would commonly be available only on one
platform, and each piece would be able to perform only
a specific task. As such, Amtec’s Tecplot was used
on Windows based PC’s. PW Wave, running under

1Available at http://diverse.sourceforge.net

Fig. 1 capVTE user interface, showing two loaded
datasets

SUN Solaris would generate HDF files, which could
then be loaded into Diverse, running in the CAVE.
Slicer/Dicer, running on Apple Macintosh, could also
generate HDF files, as well as QuickTime movies of the
cutting plane moving through the dataset. On-line col-
laboration was possible by loading Inventor files into
the CAVE Collaborative Toolkit.

The large variety of visualization tools is of course
very time inefficient. If, during the on-line collabora-
tion, a certain party was interested in seeing a different
aspect of the dataset, the original data had to be
loaded into the appropriate software, the requested
isosurface or cutting plane had to be extracted, the
output had to be saved in a file and finally loaded
back into the collaboration console. Resources were
wasted as well, since due to either licensing issues, or
the mere lack of support of a particular package for
a certain platform, we could not always utilize of the
fastest machines available.

Furthermore, we were interested in visualizing all
the aspects of plasma simulation, and not be lim-
ited to displaying just the grid-contained scalar values.
Plasma simulation solves the flow of particles around
a particular geometry, and we needed a software which
could easily visualize the geometry as well as the par-
ticle flow.

Therefore, the CAP Lab Virtual Testing Environ-
ment (capVTE) project was initiated. The aim was to
create a single, easy to use piece of software capable of
visualizing the results generated by a CFD or a PIC
code. As such, the program had to be able to display
the geometry, grid data and particles. The process
had to be real-time, allowing the user to “immerse”
himself into the data. The “extract plane, set cam-
era view, render, wait” procedure common to many
other visualization tools was not acceptable. The pro-
gram had to be able to process multiple data frames,
and play them back to display time-dependent trends.
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Sharing of results had to be as simple as possible, with
a fully integrated network support. Lastly, it was de-
sired for the source code to be platform independent,
resulting in a fast release to any required platform.

CapVTE, shown in Figure 1, is a multi-window, GUI
application. The user navigates through each dataset
in real-time using the mouse. Menus and toolbars are
used to select the active tools and to change their prop-
erties. The data input consists of a single ASCII file
which contains the appropriate header, followed by
program commands and data blocks. However, the
INSERT command allows for the dataset to span over
several physical files, in a fashion similar to that of
C/C++’s #include directive. As such, the main in-
put file can be a just a short collection of INSERT
statements pointing at a geometry file created from
an output of a 3D modeling application, and the grid
and particle files, generated by the PIC code.

Fig. 2 View of a cutting plane, isosurfaces and the
geometry scalar gradient

The geometry is specified by its nodes and their re-
spective connectivity. Each node can be individually
colored, resulting in a more attractive presentation.
Support for transparency is also included, making it
possible to generate windows and other see-through
sections. The geometry serves two roles. First, the
addition of geometry simplifies the task of visually
deducing results from the data set. Changes in the
contour lines on a cutting plane, for instance, can be
more easily translated into the corresponding effect by
observing their relationship to the surface geometry.
Secondly, capVTE supports a real-time scalar gradi-
ent mode. In this mode, the user specified coloring
of the geometry is replaced by color-values extrapo-
lated from the surrounding grid nodes. As such, every
surface of the geometry acts as an individual cutting
planes.

The spatial distribution of one or more variables is
described by the grid block. The Cartesian mesh on
which the data is defined can have a variable spac-
ing and a variable number of nodes. The number of
scalar components is also limited only by the available
memory. The distribution of the active component can

Fig. 3 View of glyphs, a cutting plane and an
object geometry

be studied using cutting planes and isosurfaces, shown
in Figure 2. The user can specify the minimum and
maximum extent of the data contained in each isosur-
face, as well as the number of contour levels and their
respective values. In conjunction with the geometry
block, the grid data can be used to generate a scalar
gradient along the geometry surface.

The glyphs block specifies small graphical objects
that can be placed anywhere in the domain. The ge-
ometry representing each glyph can be one of the many
predefined types, ranging from point clouds through
wedges and cubes to cones and spheres of varying
resolution. Each glyph can be scaled and oriented ac-
cording to its vector data. The number of glyphs can
vary from frame to frame. As such, glyphs have many
uses, among which is the representation of the macro-
particles used in the PIC simulation, or addition of
vectors onto the grid nodes. An example of the use of
glyphs and a cutting plane is given in Figure 3.

The grid and glyphs are loaded as a collection of
frames. In the playback mode, the program automat-
ically advances the current frames. Cutting planes
and isosurfaces are automatically updated and glyphs
are moved to their new position. The playback rate
and the level of detail available is of course limited by
the graphical capabilities of the used computer, how-
ever, modern, off-the-shelf PCs are more than capable
of sustaining playback of several frames per second,
with cutting planes and isosurfaces generated on a
grid with several thousand nodes without compromis-
ing the real-time navigation. The record mode exports
a bitmap image at a chosen interval. These pictures
can then be converted into a movie using software such
as Adobe Premier or Flash MX.

capVTE allows a data export in three formats.
First, static snapshots can be saved as JPEG im-
ages. Second, the VRML (Virtual Reality Markup
Language) is a commonly used method to capture 3D
objects. Unlike the JPEG format, VRML captures
the polygons making up the currently seen isosurfaces,
cutting planes, glyphs, geometry, and so forth. VRML
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is commonly used to publish 3D data on the Internet,
and plugins are available for the popular browsers.
Lastly, the Inventor format also captures the three-
dimensional structure, but is compatible with Diverse,
software used to run the CAVE.

The graphic engine used by capVTE is the open-
source Visualization Toolkit (VTK) library, produced
by Kitware. Not only has the use of this package
drastically reduced the development time, VTK is also
platform independent. It interacts with the OpenGL
package, and versions of VTK are available for Win-
dows, UNIX/Linux and System X. Similarly, the GUI
is created using Trolltech’s QT. QT is also platform
independent and takes care of the many headaches as-
sociated with a cross-platform development, such as
interaction with windows, user input, and the creation
of timers. Therefore, deployment of capVTE for a par-
ticular platform involves only linking the source code
with the VTK and QT libraries made for that specific
platform.

Fig. 4 Network collaboration showing three con-
nected clients

The real-time data immersion offered by capVTE
is an important tool in the study of large 3D data
sets. However these days scientific projects are lead by
groups composed of universities and research laborato-
ries throughout the world. The network module, based
on a client/server, TCP/IP architecture, simplifies the
sharing and studying of the data across multiple labs.
The user specifies whether a new server should be es-
tablished, or whether the program should connect as
a client to an already running collaboration. Before
connecting, each user specifies an ”avatar”, a small
graphical object, which is located and oriented accord-
ing to that user’s viewport. Thus, every member of the
online collaboration can see what part of the dataset
their colleagues are looking at, as illustrated in Figure
4. The network is also partially synchronized. When
one client toggles cutting planes, for instance, cutting
planes will be toggled for the other clients as well.

Thus, all members share the same virtual space, with
the only difference being the position from which the
view is made. Some synchronization problems can oc-
cur, however, if the hardware performance of the used
machines varies widely. This problem will be corrected
shortly, as described in the FutureWork section.

Examples
The Deep Space 1 Spacecraft

One of the first applications of capVTE was the vi-
sualization of CEX expansion around the DS1 satellite.
The dataset was generated by Dr. Joseph Wang and
is further described in XXXXX. The data consisted of
the steady state potential and charge density distribu-
tion throughout the domain, as well as macro-particle
velocity averaged onto the grid nodes taken at sev-
eral time steps. The spacecraft model was symmetric
on both the x and y axis and thus only one quarter
of the satellite was analyzed. It was embedded in a
43x43x71 grid, averaging approximately 4000 macro-
particles per cell.

The simulation results for the quarter-sized satel-
lite were first replicated accordingly to the other three
quarters. We were interested in displaying the results
in conjunction with the satellite geometry. Since the
simulation was performed using an analytically defined
object, we had to generate the surface mesh matching
the analytical description. The computational domain
captured only the portion of the solar panels close to
the spacecraft body, however, they were extended for
visualization purposes. This extension is easily visible
in Figure 5, as the sheath around the solar panel comes
to an abrupt stop at the grid boundary.

Fig. 5 DS1 φ isosurfaces

Figure 5 shows the visualized product. The num-
ber of isosurface levels was set at 25, and they were

4 of 7



generated at evenly spaced intervals. Each isosurface
is shown at only a 50 % opacity, making the region
of high potential near the thruster exit easily visible.
A more simplified view of the plume expansion can
be obtained using the cutting plane tool (see figure
). However, we have found that the three-dimensional
characteristic of isosurfaces aid greatly in the visual
study of the results. Unlike cutting planes, which limit
the result to a two dimensional space, the isosurface
tool connects equal scalar values through the entire
domain. It is possible to miss an important feature of
the result if one doesn’t choose a cutting plane passing
through that particular region. The possibility of this
happening with isosurfaces, although existing, is much
smaller.

Fig. 6 Averaged flow velocity, early stage

Visualizing the actual flow of macro-particles would
be a daunting task, since approximately 5 million par-
ticles were present in the simulation at a steady rate
REF XXXX. Although a small subset could be chosen,
a more accurate description of flow can be achieved by
averaging the flow velocity onto the grid nodes. Scaled
and oriented glyphs can then be used to indicate the
flow direction and magnitude. Further, only a sin-
gle plane of the grid was chosen to reduce the visual
clutter of the resulting animation. The chosen plane
corresponded to z=55, or 11 computational cells down-
stream from the thruster exit. This section roughly
corresponds to the region of maximum plume expan-
sion. Several frames of the resulting animation are
shown in figures 6, 7, 8. Figure 6 was taken shortly af-
ter the particle injection process began, while the flow
velocity in figure 8 is approaching the steady state.
The flow velocity is the highest close to the thruster
exit, as can be seen from the larger size of the glyphs.
The radial expansion of the plume is visible from the

Fig. 7 Averaged flow velocity, medium stage

Fig. 8 Averaged flow velocity, steady-state

outward orientation of the glyphs.

A full three dimensional data immersion was accom-
plished by exporting the geometry/isosurface combi-
nation of Figure 5 to an Inventor file. The Inventor
file was the loaded into the CAVE using Diverse. The
plume expansion data is a great subject for a CAVE
study, as it is possible to walk in between the isosur-
faces of the φ distribution. The full 3D immersion
results in a wider range of visible detail than can be
perceived through a 2D computer monitor.
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The DS1 Ion Optics

The ion optics grid is susceptible to erosion by im-
pingement of charge exchange ions. An effort is being
made to improve the grid design, predict thruster ser-
vice life and understand failure modes using computer
simulation.

The particle flow around the DS1 NSTAR ion optics
was simulated using three PIC codes developed by Dr.
Joseph Wang. The first code handled the motion of the
ion beamlets, the second the neutrals, and the third
handled the charge exchange ions. The simulation ge-
ometry was chosen such as to represent the minimum
domain accounting for all the 3D effects of the hexag-
onally laid out grid, and can be seen as one quarter of
the geometry seen in figure 9. No assumptions were
made about the state up or downstream of the optics.
As such, the computational was chosen large enough to
fully resolve the beamlet neutralization and backflow
of the charge exchange ions. The results presented in
figure 9 were generated using a 30x30x400 grid, with
about 1.8 million macro-particles used in the beamlet
simulation and 9 million particles used in the charge-
exchange ion simulation. The results were found to
agree with measurements from a long duration test at
JPL.

Figures 2 and 9 show two different views of the data
set with different types of visual tools. Figure 2 has
almost all of the visual features of capVTE toggled
on. The number of isosurfaces was set to 25 but the
data displayed were shifted by omitting the part of
the data before the screening grid so that the data
downstream could be seen. Indeed the values for the
electrostatic potential upstream of the screening grid
are so large that when capVTE displays evenly spaced
isosurfaces, not enough isosurfaces render the complex
structures occurring at much lower potentials. The
shape of those isosurfaces describes the pattern of the
flow of ions both through and at the exit of the grids.
The scalar gradient was applied to the surface, thus
the two grids have two different colors, the screening
grid is red to indicate the high electrostatic potential
on it while it is blue on the accelerating grid for it has
a low relative electrostatic potential. Finally a plane is
set up along the flow cutting the grids orthogonally to
the y-axis and passing through the center of the geom-
etry. The plane has a 50% opacity and shows contours
lines of the electrostatic potential downstream of the
grids. Figure 2 is a much lighter version of figure 2
showing the same data set except that this time the
isosurfaces have a 50% opacity. Using a low opacity for
the isosurfaces help at seeing the geometry that those
isosurfaces wrap, however it slows down the rendering.

Future Work
Although the desktop version of capVTE contains

most of the desired features, several issues still re-
main to be resolved. First of all, the program requires

Fig. 9 Deep Space 1 Ion Optics.

a very extensive testing to verify its stability in the
cross-platform environment. Secondly, the network in-
terface, which is the newest addition to the project,
needs to be optimized. Currently, the central server
relays the messages pertaining to the state of each
client as received. This results in a large number of
network traffic, and high number of screen redraws.
Instead, the server should collect the state informa-
tion, and communicate it at a preset interval in a
single network packet. This will also improve the
overall synchronization of the clients. Further, the
network communication relies on open sockets. Open
sockets can be potential security holes, and could pre-
vent clients behind a strong firewall from connecting
to other capVTE users. Thus, the possibility of im-
plementing a secured connection using the OpenSSL
package is being investigated. Dialog window will be
added allowing users to send text messages across the
network, as well to ”jump” into somebody else’s head,
and thus share the view of the dataset with their col-
legeau.

After the work on the desktop version of capVTE is
finalized, the work will begin on porting the code to
the CAVE. Successful completion of this project will
result in an unsurpassed visualization experience. The
user will be able to physically walk through the data.
The CAVE will serve as a physical vacuum tank. The
user will be able to see the thruster geometry, with the
macro particles being emitted at real time. Generation
of cutting planes will be as simple as waving the wand
along the direction of the cut. Of course, porting the
code to the CAVE presents some challenges, most of
these coming from the different architecture between
the PC, containing a single graphics pipe, and the four-
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pipe CAVE. Thus, a version of VTK for the CAVE is
not directly available. However, several packages exist
which interface, at varying levels of success, VTK’s
calls to OpenGL, to the CAVE graphic libraries.

Conclusion
As the field of electric propulsion advances, the pos-

sible applications of such a propulsion system grows
both in number and in feasibility. Due to the fact
that electric propulsion is still a relatively new field
many more extensive ground-based and space-based
tests are required before electric propulsion becomes a
staple of the spacecraft propulsion industry. The price
tag for such a test can be sizeable, which is why com-
puter simulations are such an attractive prospect. A
computer simulation can enhance the knowledge about
the system and help guide the research and develop-
ment in the right direction at a much lower cost. In
order to fully comprehend the results of the simula-
tion it is often necessary to use a visualization software
package. CapVTE is a user-friendly package that re-
quires minimal training to be able to use. This virtual
environment program allows the user more functional-
ity than many currently available visualization pack-
ages and the networking capability allows colleagues to
share their research much more easily. Computer sim-
ulations are becoming more common in many fields,
and like electric propulsion they will need visualization
software. CapVTE can be a valuable tool in increasing
the knowledge gained through simulation research.
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