
40th Joint Propulsion Conference, July 12-14, 2004, Fort Laudardale, Fl

Development of the DRACO Code for Modeling

Electric Propulsion Plume Interactions

Lubos Brieda∗, Raed Kafafy†, Julien Pierru‡ and Joseph Wang§

Computational Advanced Propulsion Laboratory, Virginia Tech, Blacksburg, VA, 24060

COLISEUM is a plasma simulation package for modeling electric plume interactions
currently being developed by Air Force Research Lab, MIT, and Virginia Tech. One of the
major components of COLISEUM is the DRACO code. DRACO, designed to perform first-
principle based, high fidelity simulations of plume spacecraft interactions, include several
simulation modules. As the purpose of DRACO is to simulate real engineering problems,
DRACO reads in spacecraft configurations defined by commercial CAD tools. A unique
feature of DRACO is that it incorporates the recently developed immersed finite element
particle-in-cell (IFE-PIC) algorithm. This method allows one to use a Cartesian mesh
to handle realistic spacecraft geometry without scarifying the accuracy in electric field
solutions. The computational speed of an IFE-PIC simulation is about the same as that
of standard PIC simulation. DRACO is cross platform and runs on Windows, Linux, and
Unix. This paper presents an overview of the DRACO code and presents simulation results
for simulation of CEX backflow in a vacuum tank as well as plume/spacecraft interaction
in the presence of a charged plume shield.

I. Introduction

The Air Force Research Laboratory (AFRL) is sponsoring the development of a flexible, user-friendly,
plasma computational package called COLISEUM. The core library of COLISEUM provides the rudimentary
input/output support to several plasma simulation packages. The complexity of the simulation packages
ranges from a simple ray-tracing algorith, through a prescribed plume model to several ES-PIC simulation
modules. The DRACO module, being developed at Virginia Tech, is described in this paper. Additional
information about COLISEUM and its simulation packages is available in Ref. 1-2.

DRACO is a multi-purpose electro-static, particle-in-cell (ES-PIC) plasma simulation package. As shown
in Fig. I, DRACO allows the user to choose from several Poisson solvers. The quasi-neutral solver obtains
the potential by assuming the Boltzmann distribution for the electron density and a constant electron
temperature. The quasi-neutral solver is intended for quick calculations and cannot be used to resolve the
plasma sheath. The DADI solver uses a standard finite-difference formulation to solve the electric field. It
is designed for problems with relatively simple geometries.

The Immersed Finite Element (IFE) is DRACO’s most sophisticated solver. IFE is based on a finite
element formulation, and is designed to perform simulations accurately for problems involving complex
geometric and material boundary conditions. Instead of using a complex body-fitted mesh, the IFE method
uses a structured mesh without consideration of the object surface location. Thus the standard, Cartesian
mesh based method for particle-mesh interpolations and pushing particles can be used even in simulations
involving complex geometric boundaries. This allows DRACO to retain the computation speed of a standard
PIC code. Many of DRACO s subroutines are based on 3-D plasma simulation codes previously developed by
J. Wang to simulate ion thruster plume interactions4 and ion optics plasma flow.5 The legacy code produced
results that were in excellent agreement with data from Deep Space 1 in-flight measurements and the long
duration test of the NSTAR thruster.

∗Graduate Student, Department of Aerospace and Ocean Engineering, Student Member AIAA, lbrieda@yahoo.com
†Graduate Student, Department of Aerospace and Ocean Engineering, Student Memeber AIAA, rkafafy@vt.edu
‡Graduate Student, Department of Aerospace and Ocean Engineering, Student Member AIAA, jpierru@vt.edu
§Associate Professor, Department of Aerospace and Ocean Engineering, Associate Fellow AIAA, jowang@vt.edu
Copyright c© 2004 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

1 of 21

American Institute of Aeronautics and Astronautics Paper 2004-3633

40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
11 - 14 July 2004, Fort Lauderdale, Florida

AIAA 2004-3633

Copyright © 2004 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Figure 1. DRACO Code Structure

The simulation progresses according to commands specified in COLISEUM’s input file. A typical com-
mand sequence first loads in a triangular mesh defining the surface of the test objects. Surface triangles are
grouped into component zones. The user defines module-specific parameters on each component, such as
the material name, potential, conductivity and/or visibility. Material properties are also loaded and include
density, charge, specific weight (for propellant material). In a DRACO simulation, a helper mesh-generation
module, VOLCAR, is initiated next. VOLCAR reads an input file specifying the span and discretization of
the simulation mesh (or meshes). The generated mesh is intersected with the surface definition. Particle
sources are specified by attaching emmision models to surface components. The poisson solver is then ini-
tiated and electron reference parameters are specified. Constant background fields can also be loaded and
ionization can be modeled using MCC. A new simulation or a restart of a previous run then begins. All
input parameters are assumed to be in SI units, unless a non-dimensional input flag is set. In the former
case, the code automatically non-dimensionalizes the input according to the mass and density of a reference
specie. Field diagnostics as well as PIC diagnostics (such as the number of particles, nmp, or energy) are
outputted at specified interval. At the end of the simulation, selected field scalars are outputted to a grid
file. The output is formatted for use with Tecplot or the CapVTE3 immersed virtual reality environment.
The code can restore the full domain in a partial simulation by mirroring the solution along the symmetric
faces. The solution is also extrapolated onto the surface definition. Particle positions and velocities can be
sampled and outputted as well.

This paper describes in detail the mesh generation process as well as the fundamental equations used by
the tetrahedral-based PIC code. Two examples are presented. In the first example, the CEX environment
inside two vacuum tanks of different sizes is modeled and compared to an “in-space” reference case. The
effect of background neutral density is also investigated. The second example studies the influence of a
charged plume shield on the backflow of CEX around a satellite. The steady state solution is obtained for a
negative shield and surface flux is compared to a grounded shield case.

II. Uniform Tetrahedral Simulation Grid

A. Simulation Grid

A crucial aspect of computer plasma simulation is the generation of a computational grid and making
embedded objects “visible.” One possibility involves the use of an unstructured mesh. An unstructured
mesh consists of nodes scattered throughout the simulation domain and a connectivity list linking the nodes
into simulation cells. The mesh is body-fitted, and as such will contain only the unknown nodes along with
B.C. specified on the external faces. The process of creating a body-fitted unstructured mesh is not trivial,
however, multiple commercial packages are available to perform this task.

2 of 21

American Institute of Aeronautics and Astronautics Paper 2004-3633

The lack of structure which makes the unstructured grid so suitable for geometry modeling also imposes
an overhead on the remaining aspects of the simulation. In order to perform tasks such as particle-to-cell
weighing or a boundary check efficiently, the program needs to actively keep track of the particles residing
in each cell. At every “move” operation, the code must flag all particles crossing the cell’s walls. These
particles are then shipped to the appropriate neighbor. Additional memory is also needed for storage of the
node connectivity list.

The weighing is trivial if a structured grid is used, since the position of a particle is mapped to the
simulation cell by directly inverting the analytical function used to define the node placement. From the
performance standpoint, a structured grid is superior, especially if a large number of macro-particles is used,
as is often needed in order to minimize the simulation noise. Unfortunately, a uniform Cartesian mesh cannot
resolve complicated geometries, since the geometry detail is limited by the spacing of the grid nodes. Smooth
objects will degenerate to a “stair-case” representation. The electric field and surface interaction will not
be resolved properly in the vicinity of the objects, which is usually the region of primary intersect in the
study of plume/spacecraft. In cases of simple geometries, it is possible to use an analytical representation
of the objects to describe the surface boundary condition, but this approach is not practical for large-scale
simulations.

Hence, a mesh which can resolve complicated geometries fairly accurately, yet can retain the benefits of
a structured mesh is desired. The DRACO simulation package presented in this paper uses such a mesh. A
primary uniform Cartesian grid (UCG) is used to perform the particle-to-grid weighing and the calculation
of the electric field. Each cell of the UCG is subdivided into five tetrahedra, as shown in Figure 2. The
embedded geometry is resolved by planar cuts of the interface tetrahedron. The tetrahedral mesh is then
used to calculate the field potentiala, φ, as well as to perform the particle-surface interactions.

Figure 2. Tetrahedral mesh

The availability of the tetrahedral mesh allows for a much smoother representation of the test objects.
The 2D-drawing in Figure 3 illustrates the difference. The node-only representation of a circle is clearly
inferior. However, an almost perfect match is possible if the object is specified using planar cuts of the
tetrahedral elements. This figure also illustrates that two types of elements will be present in the simulation.
Non-interface elements are those that are located completely either inside or outside the objects. Interface
elements, on the other hand, are being cut by the object surfaces. Hence they will contain nodes located
both in and outside of the object.

B. Mesh-Surface Intersection

Because only planar cuts through the interface elements are allowed, each interface element must have either
three or four if its six edges cut. The number of intersected edges depends on the orientation of the cut, as
shown in Figure 4. Since the test objects are represented by a triangular surface mesh, the problem simplifies
to the common line-triangle intersection (LTI) algorithm.

First, in order for the intersection to be possible, the two endpoints of the edge must not lie on the same
side of the plane to which the surface triangle belongs. The check here is very simple. The simulation volume
Ω is cut by the plane Γ into two halves: Ω+ and Ω−. Then

~x · n̂ + D

= 0 ∀~x ∈ Γ
> 0 ∀~x ∈ Ω+

< 0 ∀~x ∈ Ω−

(1)

aIf the IFE solver is used

3 of 21

American Institute of Aeronautics and Astronautics Paper 2004-3633

(a) Uniform Cartesian Mesh (b) Overlaid Tetrahedral Mesh

Figure 3. 2D representation of a circle on a uniform Cartesian mesh and on an overlaid Tetrahedral mesh

(a) A three-edge cut (b) A four-edge cut

Figure 4. Planar intersection of a tetrahedral element

4 of 21

American Institute of Aeronautics and Astronautics Paper 2004-3633

where ~x is some arbitrary point, and Γ is defined by its normal vector n̂ and some constant D. If a substitution
of both endpoints of the edge into Eq. 1 results in a non-negative RHS, both points lie on the same half of
the plane, and an intersection is impossible. A secondary algorithm is used for the coplanar RHS=0 case.

If the an intersection with a plane is possible, the intersection point is found from

~p = ~x1 + t (~x2 − ~x1) (2)

where ~x1 and ~x2 are the two endpoints of the edge and t is given by

t =
D − n̂ · ~x1

n̂ · (~x2 − ~x1)
(3)

Lastly, a check needs to be made to verify that the intersection point is internal to the triangle. Several
methods could be utilized. The three FE linear basis function, Ψ1 to Ψ3, can be written for the triangle.
The functions are evaluated for the triangular coordinates of the point in question. The range of each Ψi will
be in [0 : 1] as long as the point is internal to the triangle. However, a different approach is used in the code.
At the node ~A, an angle α can be formed as 6 ~C ~A~B. Two secondary angles can also be formed, defined by
α1 = 6 ~C ~A~p and α2 = 6 ~p ~A~B. If α1 > α or α2 > α, the intersection point is outside of the triangle, and the
intersection does not exist. If the point passes the test at node ~A, the process is repeated at nodes ~B and ~C.

The intersection algorithm works well for smooth surfaces, but problems arise if edges or corners terminate
inside the tetrahedron. In such a case, tets with fewer than three cut edges will result. Similarly, the presence
of a sharply concave geometry can result in the number of cuts being higher than four. Presently, such bad
intersections are corrected by discarding intersection information if the number of cuts is less than three,
and by keeping only the first three intersections for the elements with a cut count higher than four. A more
robust correction algorithm needs to be developed.

The problem of bad intersections can be partly eliminated by snapping all sharp edges to the grid. This
technique works well for edges parallel to one of the three major grid dimensions, however, it is not applicable
for arbitrarily oriented objects, such as diagonal beams. Mesh refinement, which is discussed in section D,
allows the user to specify finer meshes around test objects. Since the “sharpness” of an edge is directly
related to the size of the tetrahedron, the addition of finer meshes will result in a local smoothing of the
geometry.

C. Classification of node/element location

The location classification (LC) algorithm marks all nodes and non-interface elements as either internal or
external. The algorithm requires that the node ordering of the surface mesh is such that the normal vectors
at each surface triangle point outward. Hence, the location algorithm is conceptually very simple. If ~x is
the position of a node, or a tetrahedron’s centroid, and ~c is the centroid of a surface triangle visible from ~x,
then a vector ~v = ~c− ~x can be formed. Then, the angle between ~v and the triangle normal n̂ is given by

cos(α) =
~v · n̂
|~v · n̂|

(4)

and the node is external if α ∈
(
−π

2 : π
2

)
.

The implementation difficulty arises from the need to find a visible surface triangle. Since only centroid
information is needed, a triangle is deemed visible if its centroid is visible. For the centroid to be visible,
there must not be any other triangle intersecting the ray ~v. This calculation can become a computational
nightmare if a large number of surface triangles is used. To illustrate this point, lets assume that a continuous
surface is specified by nel triangles. Checking the visibility of any particular surface triangle requires up to
nel − 1 calls to the LTI algorithm. On average, nel

2 triangles may need to be checked until a visible triangle
is found. Hence, to classify the location of a single node, O

(
n2

el

)
calls to the LTI algorithm may be needed.

The operation count will be smaller for the average node, however, a typical simulation contains around
106 nodes, and five times as many elements, which immediately shows why this approach cannot be used
without some optimization.

Two such optimizations are employed in the code. First, the likelihood that a triangle will be visible
decreases as the distance to its centroid increases. This is because more triangles will be present in the region
between the node and the centroid. The LC algorithm divides all surface triangles into “bins”, according to

5 of 21

American Institute of Aeronautics and Astronautics Paper 2004-3633

the distance to their centroid. A visible triangle is first searched in the closest bin, if none is found, the code
moves to the second bin, and so on.

The second optimization is based on the fact that all nodes internal to an object will be separated from
the external nodes by the interface elements. Before classifying the location according to Eq. 4, the LC
algorithm checks whether location can be copied from the left, front or bottom (i− 1, j − 1, k − 1) neighbor.
This optimization is highly dependant on a sucesful execution of the intersection algorithm. If too many bad
intersections are formed, the interface will contain holes, and the location type will “leak-out”.

Element location is classified according to the node location, when possible. If all four vertices of a
tetrahedron have the same location type, the tetrahedron must clearly also have the same location type.
If mixed vertices exist, and the element is non-interface, as may be the case for a tetrahedron along a
surface snapped to the Cartesian grid, the location is determined by applying the described LC algorithm
to tetrahedron’s centroid.

D. Mesh Refinement

Often, the simulation geometry will contain details smaller than the cell size of the simulation domain.
Similarly, the geometry may contain many sharp corners which are not being intersected properly using
the larger cells. Decreasing the cell size in the entire domain is usually not the option, since it would
require increasing the number of cells such that the span of the domain remains constant. Memory and
computational requirements for the larger domain could be prohibitive.

A better alternative is to use mesh refinement. VOLCAR allows for multiple overlapping grids of varying
depths to be present in the simulation domain. The meshes are specified by the user in the same format as the
main mesh is specified, with the exception that discretization is chosen automatically. VOLCAR currently
supports only a 1:2 refinement, in which every other node, beginning with the first node, is overlapping a
node on the parent grid. In simulations containing an object in an initially empty domain (such as a satellite
in space), the refined mesh can encompass the entire simulation geometry. The parent coarse grid then does
not resolve any object boundaries, and can be specified as Cartesian-only. The node location on the refined
mesh is be propagated upward to the parent mesh. The nodes not overlapped by any child mesh are set as
external. This approach reduces memory requirements for large-scale simulations.

III. ES-PIC Code

A. Fundamental Equations

The DRACO simulation package is based on the electro-static, particle-in-cell (ES-PIC)7 method. The
plasma is represented by a finite set of macro-particles, each of which is accelerated according to

~F = m
d~v

dt
= q

(
~E + ~v ×

~B

c

)
(5)

where ~B is a constant background magnetic field. The electric field, ~E is determined from

−∇ ~E = ∇2φ = − ρ

ε0
(6)

where ε0 = 8.854× 10−12F/m.
Computer arithmetics is higly susceptible to round-off errors, especially when operations are applied to

operands of different orders of magnitude. DRACO’s input parameters are specified in the SI units, but
are internally normalized prior the start of the simulation. Length is normalized by the Debye length, λd,
and velocity is normalized by the plasma frequency, ωp. Both parameters are computed using the mass
and densities of a specified reference specie. The remaining quantitites are normalized accordingly. The
dimensional quantites are restored automatically at the end.

B. Particle-surface interaction

Stability of the solution prohibits the particles from traveling through more than one cell during any single
time step. This condition can be exploited to efficiently perform the particle-surface interaction check. A

6 of 21

American Institute of Aeronautics and Astronautics Paper 2004-3633

particle interacts with a surface if, during the time step motion, it crosses inside the solid object. But
since the minimum thickness that can be resolved by the simulation grid equals the cell size, a particle in
a properly defined simulation cannot travel completely through an object during a single step. The only
required check is whether the final position of the particle is within a solid object. Since the simulation grid
is divided into tetrahedral cells, a particle position check could be performed by placing the particle into a
tetrahedron, and, according to its type, performing an appropriate function. However, from the performance
standpoint, this approach is not acceptable. During the simulation, the majority of particles will reside in
the volume far removed from the test objects, and thus will be located in an external Cartesian cell. Placing
the particle into a cell on a uniform Cartesian grid is a trivial, computationally cheap operation. The first
test consists of checking whether the cell is either completely external or internal to the object - whether all
its nodes have the same location type.

The majority of particles will be classified using the first test. However, if the particle resides in a
Cartesian cell being cut by the test objects, a second test will be needed. Here it is necessary to place the
particle into the proper tetrahedron. Since each Cartesian cell is subdivided into five tetrahedra, the particle
needs to reside inside one of them. Hence, instead of calculating which tetrahedra the point could be in, the
code only loops through the five possible choices. The check is performed by subdividing the tet into four
sub-tets, each formed by joining three of the four original vertices with the position of the macro-particle.
The particle is located inside the tetrahedron if the total volume of the four sub-tets equals the volume of
the tetrahedron. In other words, a point is located in a tetrahedron if∣∣∣∣∣Vtet (1, 2, 3, 4)−

4∑
i=1

Vtet (p, vi1, vi2, vi3)

∣∣∣∣∣ ≤ ε (7)

where a volume of a tetrahedron, Vtet, given by vertices (xi, yi, zi)
∣∣4
1 is

Vtet (1, 2, 3, 4) =
1
6

∣∣∣∣∣∣∣
(x2 − x1) (y2 − y1) (z2 − z1)
(x3 − x1) (y3 − y1) (z3 − z1)
(x4 − x1) (y4 − y1) (z4 − z1)

∣∣∣∣∣∣∣ (8)

and (xi, yi, zi)p denotes the position of the particle. The tolerance term, ε, is used to account for the
inexactness of computer arithmetic. The three vertices of the original tetrahedron used to construct a
sub-tet are given by the circular indexes vi

b.
If the particle resides inside an interface element, a third test is necessary to determine which side of the

cut the particle is in. DRACO checks whether the particle and a single vertex of the interface tetrahedron
reside on the same side of the planar cut, as given by Eq. (1). If both points lie on the same side of the cut,
the particles location is set to that of the vertex, otherwise it is set to the opposite.

If the particle impacted the surface, several actions are feasible according to the particle’s type and its
impact velocity. A neutral particle can either reflect or stick to the surface. A charged particle will be
neutralized, and, similarly, can either impinge to the surface or bounce back. If the impact energy is high
enough, the impact can result in several surface atoms being sputtered off. The simulation presented in this
paper tracked only the CEX ions, and impacting ions were removed from the simulation. This is analogous
to neutralizing the ion and reflecting the neutral atom, while imposing that the addition of the new neutrals
will have only a negligible effect on the neutral density.

C. Immersed Finite Element Potential Solver

The immersed finite element (IFE) solver is based upon a method developed by Lin et.al.6 Previous works
show that such a Cartesian mesh based field solver can resolve the potential near to grid boundaries as
accurately as a body-fit unstructured mesh based field solver.

The IFE method applies the “interface” concept which forms the base for the original immersed/imbedded
boundary techniques. However, the IFE method is significantly different from other immersed/immbeded
boundary techniques because:

1. The IFE method is based upon finite element formulation.
bv1 = (1, 2, 3), v2 = (2, 3, 1),· · ·

7 of 21

American Institute of Aeronautics and Astronautics Paper 2004-3633

2. The trial functions used in the IFE method are constructed merely using the physics-based jump
conditions across the interface.

The essential feature of the immersed finite element method is that its mesh can be formed without con-
sideration of the interface location. Similar to those methods based on the immersed/imbedded boundary
techniques, the IFE method needs to handle interface elements with special attention; otherwise the method
will lose accuracy in the vicinity of the interface elements where important physics usually happens. The
IFE method uses finite element basis functions that can satisfy the interface jump conditions required by
physics in the interface elements. Since tetrahedral elements possess favorable topological features compared
to a brick element while keeping the total number of mesh nodes the same, the IFE uses a Cartesian-based
tetrahedral mesh. In a non-interface element, the standard linear local nodal basis functions can be con-
structed to span the local finite element space. The interface Γ divides a typical interface element T into
T+ and T− sub-elements. This partition of T is used to construct four piece-wisely linear local nodal basis
functions.

D. Effect of the refined mesh

1. Particle motion

Since the particle-surface interaction check assumes that the distance traveled by any particle during any
time step is no greater than the cell length, the time step size needs to be adjusted according to the finest
mesh. Hence, the elimination of the memory-storage problem imposes a penalty of longer computations. A
possible work-around is to calculate the field potential at the time-scale corresponding to a movement on the
coarse grid. Since moving the particles is a relatively inexpensive computational step, this method allows the
code to resolve a particle interaction with complex geometries without negatively affecting the performance.

2. Field solution

The division of the computational domain into meshes of varying cell size requires addition of a Poisson
solver capable of operating on such a mesh. One aproach is to treat the sub-grids as components of a single
larger grid, with coefficients of the Laplacian matrix for each unknown set up according to that unknown’s
neighbors. For instance, the Laplacian operator associated with the Poisson equation can be represented (in
1-D) using the 2nd order finite difference method as:

∇2φ |i ≈
φi−1 − 2φi + φi+1

∆2h
(9)

where φi is the value of the potential at the position corresponding to the node ni. This representation is
valid as long as the cell spacing ∆h is the same for both the left and right neighbors, as is the case for all
nodes internal to a particular uniform grid. If node ni represents the boundary between two grids of varying
cell size, such that xi−xi−1 = ∆h and xi+1−xi = ∆h/2, then the finite difference representation analogous
to Eq. (9) is

∇2φ |i ≈
4fi−1 − 12fi + 8fi+1

3∆2h
(10)

with a similar relationship existing for the reversed refinement order.
This approach will result in a single Laplacian matrix. The associated system is solved using an arbitrary

linear solver. However, in some instances, using a single solver is not desirable. Such is the case if the test
object is completely immersed in the fine mesh, while the coarse mesh is used to desribe the surrounding
space environment. The object will thus be completely resolved on the fine mesh, and the coarse mesh does
not need to contain any intersection information. The coarse mesh can then be solved using a finite difference
solver. The solution is retained only on the nodes not being overlapped by the child mesh. The potential on
the fine mesh is obtained from IFE.

Two issues become immediately apparent. First, due to the elliptic nature of the Poisson eq., the
solution of the fine mesh is dependant on the solution of the coarse mesh at the boundary nodes. Second,
a continuity of solution needs to be assured. The standard C1 continuity requires ~EΓ− = ~EΓ+ , however the
current implementation assures only the C0 continuity. This simplification was chosen for its performance
advantages, as well as to allow for the use of non-C1 solversc.

cSuch as the direct inversion of the Boltzmann equation

8 of 21

American Institute of Aeronautics and Astronautics Paper 2004-3633

The field solution begins by obtaining a solution on the coarse mesh. The solution is interpolated onto the
fine mesh, and external nodes are set as Dirichlet. Because the Cartesian mesh cannot resolve the geometry
detail accurately, the coarse solution will not be correct in the vicinity of the objects. Hence, enough free
space needs to be included in the fine mesh such that these effects disappear. Solution on the fine mesh is
then gathered onto the coarse mesh. The nodes of the coarse mesh which overlap non-boundary child nodes
are set as Dirichlet. New solution is obtained on the coarse mesh. The process can be repeated until the
solution along the mesh boundaries stabilizes.

IV. Examples

A. Influence of vacuum chamber walls and background pressure on CEX backflow

1. Reference “in-space” condition

The first example looks at the difference in CEX creation and backflow between an “in-space” condition and
one that can be found in a vacuum tank. More specifically, the influence of the backround neutral density
and the proximity of the chamber walls was studied. The thruster assembly was represented by a 20cm long
cylinder with a 32 cm diameter. The thruster exit had a 30cm diameter. The operating conditions were
chosen to represent the NSTAR ion engine, operating at mission throttle level (ML) 83, as given in Wang.4

The parameters are summarized in Table 1 and the thruster geometry is shown in Figure 1. The propellant
is xenon.

Table 1. Thruster input parameters

Parameter Value
nb0, m−3 3.22×1015

nn0, m−3 2.30×1017

Vb0, m/s 3.87×104

σcex, m2 3.37×10−19

nele0, m−3 3.22×1015

ni0, m−3 2.76×107

Figure 5. Simulation model of the 30cm ion thruster in a 32cm casing

A rigorous DSMC modeling can be utilized to predict the creation of the CEX ions. However, such a
model requires that the code keeps track of the fast moving beam ions as well as the neutrals. Due to their
high velocity, the beam ions are not significantly influenced by the electric field and move at their ballistic
trajectories. In this simulation, the beam ions are represented by an analytical charge density profile. An
analytical model is also used to represent the neutral density, as given by Roy,8 with a term added to account
for a constant background density. This approach frees up computational resources, which can then be used
to track a higher number of CEX ions.

9 of 21

American Institute of Aeronautics and Astronautics Paper 2004-3633

The charge exchange production rate at the thruster exit is then determined from

ṅcex0 = nb0nn0vbσcex (11)

where vb is the velocity of the beam ions. The collision cross-section area, σcex, is given by

σcex = (k1lnvb + k2)2 × 10−20m2 (12)

For Xenon, the coefficients k1 and k2 are -0.8821 and 15.1262, respectively.
The first simulation run was used to establish the reference, in-space behavior. The thruster exit was

located at x=0m, y=0m, z=0.9m. The chamber walls were not present. Charged particles striking the
thruster body were removed from the domain without affecting the charge on the thruster. Spacecraft
charging was instead approximated by fixing the potential on the thruster at -10V. The potential at the
thruster exit was fixed at φref=9V. Electron reference temperature, Teref , of 1.25eV was used. Wang4

indicates that the local Debye length in the backflow region at ML83 is of O(10cm). In this similation, the
CEX reference density, n0, was set to 2.76×1010m−3, which corresponds to λD of 5cm. The steady state
number density obtained from the simulation agrees with the input.

The cell size was set to the reference λD in all three directions. Due to the problem symmetry, only one
quarter of domain was simulated. From the computational stand-point, it is not practical for the simulation
domain to be large enough such that the outer boundary is essentially CEX-free. The expansion into an
ambient plasma was instead modeled by setting the Neumann condition, ∇φ = 0, on the outer boundaries.
Symmetry on the xmin and ymin face required that particles leaving these faces be reflected elastically back
to the domain. Domain length in the x and y directions were 2.25m; length in the z direction was 4m.

The simulation ran until the steady state, given as |∆nmp|
nmp

< 10−4, where ∆nmp is the change in the
number of macro particles between two consecutive time steps. The steady state was achieved after 450 time
steps. The total simulation timed was 80 minutes. The IFE Poisson solver was used in all the examples
presented in this paper and performed extremely very well. Tolerance was set to 10−6. In most cases, the
solver obtained the initial solution in less than 10 iterations of the non-linear solver.

The φ due to the primary beam in the absence of CEX ions is shown in Fig. 6a). The streamlines of the
~E field are also shown. Due to their initial slow velocity, the CEX ions initially follow the ~E field and will
tend to backflow to the region upstream of the thruster. This is indeed the case as Fig. 6 b) and Fig. 6 c)
indicate. The space/velocity phase plot based on an uniform sampling of every 100th particle is shown in
Figure. 7. Phase plot for x vs. u is not shown, since, due to the problem symmetry, it matches y vs. v.

(a) φ, V, in the absence of CEX
ions

(b) φ, V (c) CEX number density,

particles/m3

Figure 6. “In-space” simulation results, yz cut at x=0

dUsing an off-the-shelf Pentium IV, 2.5GHz laptop with 500Mb of RAM

10 of 21

American Institute of Aeronautics and Astronautics Paper 2004-3633

(a) y vs. v, m and m/s (b) z vs. w, m and m/s

Figure 7. “In-space” simulation results, space vs. velocity phase plot

2. Large chamber

The dimensions of the first chamber were chosen large enough, such that the chamber walls did not directly
obstruct the CEX expansion. Any variation in expansion behavior can be then attributed to the difference
in external boundary conditions. Diameter was set to 3m and the length was 6m. The upstream face of the
tank was located at z=0. The thruster was aligned with the tank’s major axis (x and y=0), with the beam
exit located at z=2.45m. The whole simulation setup can be seen in Figure 2. Both the thruster and the
tank were grounded with φ=0. Beam reference potential, φref , was set to 19V. The beam input parameters
were as described in the previous section.

Figure 8. Simulation model of the ion thruster in a large vacuum tank

Total of three runs were performed for this configuration. The background ion, ni0, and neutral, nnback,
densities were varied as given in Table 2. In terms of pressure, the background densities correspond to
approximately 3× 10−10 torr for cases 1 and 2 and 3× 10−6 Torr for case 3, assuming ideal gas. Reaching
the steady state solution took the longest for case 3 with approximately 600 time steps and over 5 hours of
wall-time. This was partly due to the time step size chosen too small. Figure 9 shows the contour lines of
the field potential on a plane of symmetry for the three cases. A similar plot was generated for the number
density of the CEX ions, and can be seen in figure 10. Both sets of plots show that the density of the
background ions, ni0, does not influence the backflow, at least not for the low values that can be expected
in a vacuum tank. The CEX density in the backflow region for cases 1 and 2 correlates with the reference
“in-space” results.

11 of 21

American Institute of Aeronautics and Astronautics Paper 2004-3633

Table 2. Vacuum tank background parameters

Case No. ni0, m−3 nnback, m−3

1 0 1× 1013

2 2.76× 107 1× 1013

3 2.76× 107 1× 1017

(a) case 1 (b) case 2 (c) case 3

Figure 9. Large tank simulation results, φ, V, at steady state, yz cut at x=0

12 of 21

American Institute of Aeronautics and Astronautics Paper 2004-3633

(a) case 1 (b) case 2 (c) case 3

Figure 10. Large tank simulation results, CEX number density at steady state, particles/m−3, yz cut at x=0

The background neutral density used in cases 1 and 2 did not significantly influence the CEX production
rates. The same is not true for case 3. The CEX production rate just outside the thruster exit increased by
almost 45%. The CEX production zone, which is dominated by a small region outside the thruster exit in
the in-space case, now extended through the entire downstream region.

Figures 11 and 12 show the space/velocity phase plots for this configuration. The yv plot shows a steady
increase in radial velocity within a 0.5m radius of the beam centerline. The same acceleration can be seen
in the reference case. Past this distance, the acceleration decreases dramatically, and the radial velocity
stabilizes at around 1500m/s. In the vacuum tank case, the acceleration decrease is also apparent at the
0.5m radial distance. However the acceleration resumes at 1m from the centerline. The secondary expansion
is due to the potential gradient created by the grounded tank walls. The effect is more noticable in case 3,
since the higher ion density will result in a larger potential drop. A wall-induced acceleration in the axial
direction is also noticeable in the zw plot, however, the region of influence is very small. This simulation
indicates that a tank of 1.5m radius can reasonably approximate the in-space conditions only within radial
distance of about 1m from the centerline.

3. Small chamber

The diameter and length of the vacuum chamber were next halved to 1.5 and 3m, respectively. The thruster
exit was located at z=0.9m. Three cases were ran, with the same parameters given in the previous section.
The influence of the tank walls, as shown in Figure 15, is much stronger. In fact, the region of constant
radial CEX velocity is almost completely eliminated. Environment inside a chamber this small is obviously
not a good representation of the in-space environment.

B. Effect of plume shield on the CEX backflow

1. Simulation model

Charge-exchange ions created due to imperfect propellant ionization will back-flow onto spacecraft compo-
nents. Although xenon is not a contaminating specie, the presence of charged particles can affect the readout
from sensitive instrumentation, even if the instruments are not in a direct line of sight of the thruster plume.
High-energy collisions with the surface will result in sputtering of the surface material. Particularly affected

13 of 21

American Institute of Aeronautics and Astronautics Paper 2004-3633

(a) case 1 (b) case 2 (c) case 3

Figure 11. Large tank simulation results, CEX x, m, vs. u, m/s, phase plot at steady state

(a) case 1 (b) case 2 (c) case 3

Figure 12. Large tank simulation results, CEX z, m, vs. w, m/s, phase plot at steady state

14 of 21

American Institute of Aeronautics and Astronautics Paper 2004-3633

(a) case 1 (b) case 2 (c) case 3

Figure 13. Small tank simulation results, φ, V, at steady state, yz cut at x=0

(a) case 1 (b) case 2 (c) case 3

Figure 14. Small tank simulation results, CEX number density at steady state, particles/m−3, yz cut at x=0

15 of 21

American Institute of Aeronautics and Astronautics Paper 2004-3633

(a) case 1 (b) case 2 (c) case 3

Figure 15. Small tank simulation results, CEX x, m, vs. u, m/s, phase plot at steady state

(a) case 1 (b) case 2 (c) case 3

Figure 16. Small tank simulation results, CEX z, m, vs. w, m/s, phase plot at steady state

16 of 21

American Institute of Aeronautics and Astronautics Paper 2004-3633

is the accelerator grid at the thruster exit, usually manufactured using molybdenum. The sputtered off
molybdenum will accumulate in the high beam density region and will undergo the same CEX collisions
experienced by the neutral xenon propellant, corrected for the different ionization energy. Molybdenum is
highly contaminating and can coat sensitive equipment, such as the solar panels or cameras. The erosion
of the accelerator grid due to sputtering of molybdenum is also the leading factor limiting the useful life
of an ion thruster. Only the backflow of xenon was studied in this example. The backflow behavior for
different materials will be influenced by the material’s molecular mass. However, the mass of molybdenum,
the primary contaminating specie, is close to that of xenon and the backflow behavior will be similar.

The satellite geometry is shown in Figure 1. A 30cm NSTAR thruster, operating at the same condi-
tions outlined in the previous example, was centered on the back face of the satellite bus. The bus was
a 1m box with numerous geometry detail added to represent on-board instrumentation. Simulation pa-
rameters matched the “in-space” case of the previous example, namely a -10V potential on the bus, with
φref=9V. Electron refence temperature remained at Teref=1.25eV and CEX reference density of 2.76×1010

particles/m3 was used. The mesh-refinement concept could not be applied to this case, due to a very slow
convergence of the DADI solver. Hence, only a quarter of the domain was simulated. While the satellite is
not completely symmetric, the lack of symmetry is not large enough to significantly affect the CEX backflow.
The quarter domain contained 50x50x90 cells, with cell spacing, dh, equal to 5 cm. Time step was set such
that no CEX traveled more than approximately 0.5dh per step, which was about 5×10−6s for this particular
case.

Figure 17. Satellite geometry with the domain bounding box

A thin plate of a 120cm radius was flushed with the thruster exit and served as the plume shield. A larger
shield would reduce the backflow by physically blocking the path of the backflowing CEX ions. However,
the added mass cost may be too prohibitive. This example examines the influence of a charged plume shield.
Charging the shield will increase its effective area, since trajectories of ions will be influenced by the potential
gradient. A negatively charged shield will attract ions, which will neutralize upon impact. Depending on the
incidence angle, the new neutrals can drift back into to the primary beam, and undergo new CEX collisions.
This secondary re-ionization is however not studied in this example. The colliding ions are removed from
the simulation, without affecting the surrounding neutral density. An alternative approach is to charge the
shield positively with the intention of repelling them away from the spacecraft.

2. Preliminary Study

The negatively charged shield shield was simulated by setting ∆φ = φshield − φbus on the shield to -19V.
Similarly, +19V ∆φ was set for the positive configuration. Countours of the potential in the abscence of
CEX for the the grounded, negative and positive configurations are plotted in Fig. 18. Streamlines of the ~E
field are also shown. Due to their slow velocities, the CEX ions will tend to follow the ~E field. Immediately
a large tendency of ions to backflow onto the solar panel can be observed.

17 of 21

American Institute of Aeronautics and Astronautics Paper 2004-3633

(a) shield ∆φ=0 (b) shield ∆φ=-19V (c) shield ∆φ=+19V

Figure 18. Potential due to the ion beam, with ~E-field streamlines, ∆φ = φshield − φbus

The negatively charged shield has a strong effect on the ions that would normally backflow onto the
bus, but only a small influence on the solar panel contamination can be seen. Specifically, this preliminary
run predicts a reduced contamination around the bottom solar panel corner. The positively charged shield,
however, does not seem to have a strong influence on the backflow. The added potential is not large enough
to overcome the strong drop in the beam radial direction. Higher plate potentials were not tested as they
caused problems for the convergence behavior of the Poisson solver. However, the potential would need to
be set high enough to deflect the ions completely away from the influence of the spacecraft. Otherwise, the
ions normally backflowing onto the bus could be pushed further into the expansion wing from where they
could backflow onto the sensitivie solar array.

3. Steady-State solution

The steady state solution was achieved in about 3.5 hours and 550 steps. At this time, approximately 1.6
million CEX ions were tracked. Figure 19 shows the isosurfaces of φ a the steady state for the grounded
plate configuration. A sheath surrounding the spacecraft can be seen. Contour slices of ion CEX density
are plotted in Figure 20 and 21 for the grounded and negative configurations. The negative shield has an
obvious influence on the expansion of the CEX wing, however, it doesn’t significantly affect the ion density
in the near vicinity of the spacecraft. A secondary effect is the reduction in the maximum CEX density in
the beam core which could have a significant impact on the rate of grid erosion.

(a) yz view from y=0 (b) xz view from top of the solar array

Figure 19. Isosurfaces of potential at steady state for the grounded shield

Phase plots for the grounded configuration are shown in Figure 22. A very good correlation with the
reference case presented in the previous example can be seen. Further, only minor difference can be seen
between the xu and yv plots, indicating that the majority of CEX is contained in the expansion wing.

18 of 21

American Institute of Aeronautics and Astronautics Paper 2004-3633

(a) shield ∆φ=0 (b) shield ∆φ=-19V

Figure 20. CEX number density at steady state, yz cut at x=0, with ~E field streamlines

(a) shield ∆φ=0 (b) shield ∆φ=-19V

Figure 21. CEX number density at steady state, xz cut at y=0, with ~E field streamlines

(a) xu (b) yv (c) zw

Figure 22. Phase plots of CEX at steady state

19 of 21

American Institute of Aeronautics and Astronautics Paper 2004-3633

4. Surface Flux

Finally, the simulation was restarted for additional 300 time-steps, at a reduced time-step size. The field
potential was solved only once every 25 iterations. Since the simulation was at the steady state, the potential
did not vary considerably between iterations. During this time, surface flux was calculated by weighing
density of removed particles onto surrounding surface nodes. Contours of the surface flux from two view
angles can be seen in Figures 23 and 24. As predicted, the contamination on the lower corner of the solar
panel is slightly reduced if the negatively charged shield is used. However, the flux on the bus increased.
Similarly, the flux on the surfaces on the opposite side of the bus from the thruster also increased. However,
the particle density at steady state in the back region was not high enough to obtain an accurate statistical
sample. The particle density used in this example was limited by the lack of a large amount of RAM on the
simulation computer.

(a) ∆φ=0V (b) ∆φ=-19V

Figure 23. Average surface flux, view angle 1

(a) ∆φ=0V (b) ∆φ=-19V

Figure 24. Average surface flux, view angle 2

20 of 21

American Institute of Aeronautics and Astronautics Paper 2004-3633

V. Conclusion

A flexible plume/spacecraft interaction modeling package called DRACO is being developed at Virginia
Tech as a part of AFRL’s COLISEUM project. DRACO is an ES-PIC code, based on a uniform Cartesian
tetrahedral mesh. Such a mesh can accurately resolve complicated surface geometries, while retaining the
computation efficiency of a structured grid. This paper describes the algorithms used in the generation
of the mesh. Elements of the PIC module are also described. Several examples are presented. The first
example looks at the influence of vacuum chamber walls on the backflow of CEX around a 30cm ion thruster.
The addition of fixed boundary condition significantly influenced the radial expansion of the CEX plume.
The representation of the environment inside a 3m diameter vacuum chamber was valid only to within the
internal radius of 1m from the centerline. Plasma within 0.5m from the tank walls was attracted to it due to
the potential drop existing between the grounded walls and the positive CEX ion region. A smaller vacuum
chamber with diameter of 1.5m could not accurately resolve the radial expansion of the CEX. The effect of
increased background pressure was also studied. No influence was noted for background density for O(1013)
neutrals/m3. Increasing the density to O(1017) resulted in CEX ions created almost uniformly through the
entire beam upstream region.

In the second example, a plume shield was placed around the thruster exit on a detailed satellite. Potential
due to the beam without the presence of CEX ions was obtained first. A positive shield did not seem to
be effective and was not studied further. Steady-state solution was obtained for a grounded shield (physical
barrier) and a negative shield (attracting ions). The negative shield reduced the size of the CEX expansion
wings, however, surface flux of xenon did not decrease. In fact, the flux on the bus increased slightly.
However, the negative shield decreased the maximum density of CEX in the beam core. This reduction
could result in lower rates of molybdenum sputtering from the thruster accelerator grid, but this behavior
was not accounted for in the simulation.

Acknowledgments

The authors would like to thank Doug VanGilder, Matt Gibbons and Mike Fife for support with DRACO
integration into COLISEUM.

References

1Gibbons, M. R., Kirtley, D. E., VanGilder, D. B., and Fife, J. M., “Flexible Three-Dimensional Modeling of Electric
Thrusters in Vaccum Chambers,” AIAA-2003-4872, 2003

2Santi, M., Cheng, S., Celik, M., Martinez-Sanchez, M., and Peraire, J., “Further Development and Preliminary Results of
the Aquila Hall Thruster Plume Model,” AIAA-2003-4873, 2003

3Wang, J., Brieda, L., Kafafy, R., Pierru, J., “A Virtual Testing Environment for Electric Propulsion-Spacecraft Interac-
tions,” AIAA-2004-0652, 2004

4Wang, J., “Three-Dimensional Particle Simulations of Ion Propulsion Plasma Environment for Deep Space 1,” Journal of
Spacecraft and Rockets, Vol. 38, No.3, 2001, pp. 433-440

5J. Wang, J. Polk, J. Brophy, and I. Katz,“3-D Particle Simulations of Ion Thruster Optics Plasma Flow and Grid Erosion,”
Journal Propulsion and Power, 2003, Vol. 38, No. 6, pp. 1192-1199

6Kafafy, R., Lin, T., Lin, Y., and Wang., J., “3-D Immersed Finite Element Method for Electric Field Simulation in
Composite Materials”, submitted to Int. Journal for Numerical Methods in Engineering, 2004.

7Birdsall, C. K., and Langdon., A. B., Plasma Physics via Computer Simulations, 1st ed., Institute for Physics Publishing,
Bristol, 2000

8Roy, S.R., “Numerical Simulation of Ion Thruster Plume Backflow for Spacecraft Contamination Assesment,” Ph.D.
Dissertation, Aeronautics and Astronautics Dept., Mass. Institute of Technology, Cambridge, MA, 1985

21 of 21

American Institute of Aeronautics and Astronautics Paper 2004-3633

