
A VIRTUAL TESTING ENVIRONMENT FOR
ELECTRIC PROPULSION-SPACECRAFT INTERACTIONS

J. Wang, L. Brieda, R. Kafafy, J. Pierru
Department of Aerospace and Ocean Engineering
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061 -0203

I. Introduction

Modeling and simulation are playing an ever more important role in space environments
and effects research activities. In recent years, the sophistication of the models and the
capability of state-of-the-art supercomputers have reached such a level that in many cases
one can produce simulation results that are in good quantitative agreement with
experimental data. For example, the 3-D ion thruster plume model described in Wang et
a1.[2001] produced results that are in excellent agreement with data taken from Deep
Space 1 in-flight measurements. The recent advance in simulation capabilities suggests
that "virtual" experiments using first-principle based models may be used to replace real
experiments to quantify spacecraft environment interactions for many applications.

This paper discusses a prototype virtual laboratory for spacecraft plasma interactions and
electric propulsion. As illustrated in Fig. 1, this virtual laboratory consists of a
simulation engine and a virtual testing environment. A user provides physical parameters
and spacecraft configurations to the simulation engine. The virtual laboratory simulates
the physical processes using a set of particle simulation codes and then displays the
results in a virtual testing environment using immersed andor collaborative visualization.

In order to develop a virtual laboratory based on first principle based simulations, one
must overcome at least two major challenges. First, one needs to be able to build up a
code that is sophisticated enough so the complex geometry associated with a satellite can
be modeled properly and yet computationally efficient enough so large-scale 3-D particle
simulations can be performed routinely. Second, one needs to be able to quickly
transform "data rich" simulation results to "information rich" for engineering
applications. Two research activities at Virginia Tech were carried out to address these
two issues. First, a new particle simulation code, DRACO, was developed for plasma
simulations involving complex boundary conditions. A unique feature of DRACO is that
incorporates the recently developed immersed finite element particle-in-cell (IFE-PIC)
algorithm. This method allows one to use a Cartesian mesh to handle complex geometric
or time-varying interface between plasma and object without scarifying the accuracy in
electric field solutions. The computational speed of an IFE-PIC simulation is about the
same as that of standard PIC simulation. Second, a new visualization and data analysis
tool, capVTE, was developed for visualizations using both virtual reality environments

42nd AIAA Aerospace Sciences Meeting and Exhibit
5 - 8 January 2004, Reno, Nevada

AIAA 2004-652

Copyright © 2004 by . Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

and regular desktopllaptop machines. capVTE offers immersed visualization for users
with access to virtual reality environments as well as a shared, collaborative environment
that allows remotely connected users to interact with each other over the same data
objects. Both DRACO and capVTE are cross platform. DRACO and capVTE form the
foundation for a virtual testing laboratory.

This paper is organized as follows: section I1 discusses the development of DRACO;
section I11 discusses the design of capVTE; section IV presents examples of spacecraft-
electric propulsion plume interactions visualized through the desktop interface of
capVTE (examples of immersed visualization are shown in the presentation); Section V
contains a conclusion.

11. 3-D Particle Simulation Engine: DRACO

Overview

The simulation engine of the virtual testing laboratory is a multi-purpose particle
simulation software, DRACO. DRACO is designed to perform first-principle based, high
fidelity simulations of spacecraft-plasma interactions. DRACO runs on UNIX, Linux,
and Window. Many of DRACO's subroutines are based on 3-D plasma particle
simulation codes previously developed by J. Wang to simulate ion thruster plume
interactions [Wang et al., 20011 and ion optics plasma flow [Wang et al., 2003aI. The
plume simulation model by Wang et a1.[2001] produced results that are in excellent
agreement with data from Deep Space 1 in-flight measurements and the ion optics model
by Wang et al.[2003a] produced results that are in excellent agreement with data taken
during the long duration tests of the NSTAR thruster. Additionally, DRACO also
includes a new particle simulation algorithm based on the immersed finite element (IFE)
formulation [Wang and Lin, 2003; Wang et al., 2003b1, IFE-PIC.

As shown in Fig.1, DRACO allows a user to choose from three simulation modules. In
the QN-PIC module, the plasma is assumed to be quasi-neutral and the electric field is
obtained by assuming the electron density follows the Boltzmann distribution. The QN-
PIC module is intended for quick calculations and cannot be used to resolve the plasma
sheath. The DADI-PIC module is a standard PIC code using a finite-difference
formulation to solve the electric field. DADI-PIC is designed for problems with
relatively simple geometric conditions. Out of considerations for computational
efficiency for large-scale simulations, DADI-PIC uses a Cartesian mesh. To resolve the
geometry associated with a curved surface, a method of sub-grid scale placement of
boundaries is used. This method explicitly includes the location of object surface in
relation to the computational mesh so that the placement of the object boundary is not
restricted to the mesh points. The electric field is obtained by solving the Poisson's
equation using a dynamic alternating direction implicit (DADI) method [Doss et a1.,1979;
Hewett et a1.,1992] with a defect correction using the Douglass-Gunn operator splitting
[Douglas and Gunn, 19641. This DADI method was chosen over other algorithms for its
increased stability properties over fully explicit methods and its relatively simple

tridiagonal system of equations produced by the partially implicit nature of the method.
This DADI-PIC model was discussed in [Wang et al, 20011.

The IFE-PIC is DRAC07s most sophisticated module. The IFE-PIC is based on a finite
element formulation, and is designed to perform simulations accurately for problems
involving complex geometric and material boundary conditions. Instead of using a
complex mesh to body-fit the body surface, the IFE method uses a structured mesh
without consideration of the object surface location. Hence, one may use the standard,
Cartesian mesh based method for particle-mesh interpolations and pushing particles even
in simulations involving complex geometric boundaries. This allows IFE-PIC to
retaining the computation speed of a standard particle-in-cell code [Wang et al., 2003bl.
The next section presents a brief overview of he IFE-PIC model.

As the purpose of DRACO is to solve real engineering problems, DRACO reads in
spacecraft configurations defined by commercial CAD tools. A Mesh Generator module
is developed as the interface between CAD tools and the PIC code. The outputs from
CAD tools are stored in an ANSYS file. The Mesh Generator then performs the
"intersection" operation to identify the intersections by an object of arbitrary geometrical
shape onto the computational mesh.

Immersed Finite Element Particle-in-Cell WE-PIC)

A PIC code typically spends a significant portion of its computing time performing
particle-mesh interpolations and pushing particles. Out of consideration for speed,
standard PIC codes are based on the use of structured, Cartesian mesh so the location of
memory of quantities defined in neighboring cells can be found trivially via indexing.
However, a Cartesian mesh based field solver is susceptible of losing accuracy when a
irregular boundary is involved. To solve the electric field accurately for complex
geometries, one would typically need to use an unstructured mesh to body-fit the
boundary surface. However, an unstructured grid based PIC code can be significantly
more expensive computationally because it requires additional memory references (e.g.
lookups in a table) to find neighboring cells and a complex scheme to push particles
[Westermann, 1992; Wang et al., 19991. Hence, accuracy and computing speed often
represent conflicting requirements for a PIC code.

We recently developed a new, 3-dimensional PIC algorithm using the recently developed
immersed finite element (IFE) method [Ewing et al., 1999; Lin et al., 20001 to solve the
electric field. Rather than treating the object surface as a boundary condition, this method
includes the object material as part of the solution domain and solves the original
boundary value problem as an "interface" problem. For instance, consider the electric
field in a composite domain consisting of two sub-domains each occupied by a different
type of material (Fig. 2). These two sub-domains are separated by a curved surface. The
electric potential is described by a boundary value problem:

- v (of'@) = f (@)

together with the boundary conditions and the jump conditions on the interface. The
media property is described by a material dependent coefficient a (X) (i.e. permittivity).
Mathematically, o (X) is a piecewise constant function defined by:

To solve the interface problem above, one may treat r either as a boundary to the sub-
domains L2 + and GI-, or as an interface inside the entire domain L2 . The IFE method
treats I' as an interface and uses the finite element formulation to solve @(X) over
domain Q .

The essence of the IFE method is that its mesh can be formed without consideration of
the interface location. While this "interface" concept is the same as that used in the
immersedfimbedded boundary techniques developed for CFD, the IFE method itself is
significantly different because a) the IFE method is based on the finite element
formulation and b) the trial functions used in the IFE method are constructed only using
physics based jump conditions at the interface.

The TFE-PIC model uses a structured Cartesian-tetrahedra1 mesh. The Cartesian mesh is
the primary mesh used by PIC. Each Cartesian cell is further divided into five tetrahedral
elements as shown in Fig. 3. The tetrahedral mesh is the secondary mesh used only by the
IFE field solver. When a curved object surface is present, the IFE mesh will include both
interface cells (those cells that have at least one edge whose interior intersects with the
interface) and non-interface cells. In a non-interface cell, the standard linear local nodal
basis functions can be used to span the local finite element space. In an interface cell, the
physical jump conditions at interface are used to determine the basis function. For
instance, consider the interface cell shown Fig.3. The interface divides a typical interface
tetrahedron i , with vertices AL , (i = 1,2,3,4) ,into T i and T - . This partition of T can be

used to introduce four piece-wise linear local nodal basis functions Yi (x) :

The coefficients in the linear basis functions are determined by the following physical
jump conditions to be satisfied by the solution:

1. Continuity on the plane EFGH:
yiy, '(p,) = Ti-(P,),i = 1,2,3,4 and j = 1,2,3

2. Flux continuity across the plane EFGH:

1 a- - ayi -)dS = O,i = 1,2,3,4
EFG an an

Satisfying these conditions provides eight equations for each local basis function which
are enough to uniquely determine that basis function. Further details of the IFE method
are discussed in [Wang and Lin, 2003; Wang et al., 2003b1, where it is also shown that
the IFE field solver possesses a second order convergence.

111. The Virtual Testing; Environment: capVTE

Overview

Large-scale, 3-D simulation models generate a wealth of data output. However, in order
to apply these models as engineering design tools, one must be able to quickly transform
"data rich" simulation results to "information rich" results. To achieve this goal, one
needs a data analysis environment which would satisfy at the minimum the following
requirements: 1)allow easy visualization and interpretation of complex multi-dimensional
data generated by particle or CFD codes; 2)enable interactive access to information from
different geographic locations and online collaborations; and 3)be machine independent.
A data analysis tool that satisfies these requirements in essence becomes a "virtual"
testing environment.

The CAP Lab Virtual Testing Environment (capVTE) is a cross-platform visualization
and data analysis tool [Brieda et al., 20031. Visual analysis can be performed on a wide
variety of hardware platforms, ranging from high-end PCs, through SUN and SGI
workstations, to virtual reality facilities such as CAVE. In addition to standard graphics
capability visualizing multi-dimensional data set, capVTE offers immersed visualization
for users with access to virtual reality environments as well as a shared, collaborative
environment which allows remotely connected users to interact with each other over the
same data objects.

The source code of capVTE was designed to be machine independent so that it may be
run from any computing platforms. The graphic engine used by capVTE is the open-
source Visualization Toolkit (VTK) library by Kitware and QT by Trolltech. Both VTK
and QT are platform independent. VTK interacts with the OpenGL package, and versions
of VTK are available for Windows, UNIXkinux and Mac OS X. QT is the basis of GUI,
which is used as the user interface for capVTE. QT is used to handle issues associated
with cross-platform development, such as interaction with windows, user input, and the
creation of timers. Therefore, deployment of capVTE for a particular platform involves
only linking the source code with the VTK and QT libraries made for that specific
platform.

The user interface of capVTE, as shown in Fig. 4, is a multi-window GUI application.
The user navigates through each data set in real-time using the mouse. Menus and
toolbars are used to select the active tools and to change their properties. The data input
consists of a single ASCII file which contains the appropriate header, followed by
program commands and data blocks. However, a data set is allowed to span over several
physical files, in a fashion similar to that of C/C++'s #include directive. The main input
file can be a just a short collection of statements pointing at a geometry file created from
an output generated by 3D object modeling tools, and the grid and particle files,
generated by particle codes or CFD codes.

capVTE allows a data export in three formats: JPEG, VRML (Virtual Reality Markup
Language), and Inventor. JPEG is used to save images from static snapshots. Both
VRML and Inventor are used for interactive visualization of 3-dimensional images. As
VRML is commonly used to publish 3D data on the Internet and plugins are available for
the popular browsers, capVTE uses the VRML format for online collaborative
visualization through network. Inventor is compatible with DIVERSE (Device
Independent Virtual Environment Reconfigurable Scalable Extensible), a collection of
Application Programming Interfaces (APIs) developed at Virginia Tech to run the virtual
reality facility CAVE. CapVTE uses the Inventor format for immersive visualization.

Immersive Visualization

Immersed visualization currently is performed using the DIVERSE software to drive a
variety of immersed visualization equipment such as the CAVE (Cave Automatic Virtual
Environment), Immersa Desk, Head Mounted Display (HMD), etc. DIVERSE can also
be used to drive visualization on conventional desktop or laptop computers.

The CAVE is a multi-person, room-sized, high-resolution, 3D video and audio
environment used as a "virtual reality theater". The CAVE facility at Virginia Tech,
shown in Fig. 5, has a size of 73.5~84 inch footprint and a 104-inch high ceiling. The
three side faces along with the floor act as screens, on which an image is projected from
four Electrohome Marquis 8000 projectors. The false-color images are shifted such that,
when viewed using the CrystalEyes goggles, they create a perception of the visualized
object floating in the center of the cube.

Inside the CAVE, one "walks" into an image. Navigation is through a tracking headset.
Its position and view angle is tracked by an array of sensors. The central computer then
adjusts the projections to create a realistic image. Further control can be accomplished
using a hand-held wand. Its translation and rotation are both tracked, and thus the wand
can act as a virtual pointer. A small joystick located on the wand allows the user to travel
greater distances than that allowed by the limited physical size of the CAVE.

Collaborative Visualization

The real-time data immersion capability of capVTE allows the creation of a collaborative
virtual environment on the internet. capVTE includes a network module, based on a
clientherver and TCP/IP architecture. The network module simplifies data sharing and
allows interactive visualization by remotely connected users. The user specifies whether a
new server should be established, or whether the program should connect as a client to an
already running collaboration. Each user specifies an "avatar", a small graphical object,
which is located and oriented according to that user's viewpoint. Thus, every member of
the online collaboration can see what part of the dataset that the others are looking at, as
illustrated in Figure 4. The network is also partially synchronized. When one client
toggles cutting planes, for instance, cutting planes will be toggled for all other clients as
well. Thus, all members share the same virtual space with the only difference being the
position from which the view is made.

IV. Simulation Examples

To demonstrate the capability of the virtual testing laboratory, this section shows one
simulation example of ion thruster plume spacecraft plasma interaction. Other simulation
examples are shown in the presentation. We consider a model spacecraft shown in Fig. 6.
The spacecraft geometry is composed of a box bus, a thruster, an antenna dish, and a flat
solar array orientated at an angle with respect to the thrust direction. Fig. 7 shows the
primary Cartesian mesh used by DRACO and the intersection of spacecraft with the
computation mesh. The thruster is taken to be the 30cm NSTAR ion thruster used on
Deep Space 1. Simulation setup and thruster operating conditions are the same as that
discussed in Wang et a1.[2001]. We assume that the solar array surface, spacecraft bus,
and antenna are at the same potential.

Simulation results using the DADI-PIC and IFE-PIC module are shown in Figs 8 and 9,
respectively. To further demonstrate the effect of solar array on charge-exchange ion
backflow, the normal direction of the solar array in the DADI-PIC run is taken to be -45
degree with respect to z while that in the IFE-PIC run is taken to be +45 degree. The
DADI-PIC run uses a computation mesh of 91x41~71 with a mesh resolution of 5cm.
The number of micro-particles used is more than 5 million. The primary Cartesian mesh
used in IFE-PIC run is 60x26~46 with a mesh resolution of 7.5cm. The number of micro-
particles used is more than 2.3 million. Comparing Figures 8 and 9, one finds that both
runs show similar results in the downstream region of the thruster. However, the
upstream region shows significant difference due to the different solar array orientation
angle. It is interesting to observe that, in the DADI-PIC run, the solar panel accelerates
the backflow charge exchange ions and produces a significant plasma wake behind the
antenna dish.

V. Summary and Conclusions

In conclusion, we have developed a prototype virtual testing laboratory for spacecraft
plasma interactions. This virtual laboratory uses a simulation engine based on a set of
plasma particle simulation codes, DRACO, and a virtual testing environment, capVTE. A
major feature of DRACO is that it includes a new particle simulation algorithm IFE-PIC.
The IFE-PIC allows one to use directly the standard Cartesian mesh based algorithms for
particle push regardless of the geometry of object boundary. Hence, simulations
involving complex boundary conditions can still be performed at a computational speed
close to that of a standard PIC code. The interface formulation used by the IFE method to
solve the electric field allows material properties to be included explicitly and maintains
the desired physics at a given material interface. capVTE enables a quick transform of
"data rich" simulation results to "information rich" ones through immersive andor
collaborative visualization. The immersed and shared visualization environment driven
by capVTE also provides an virtual experimental platform. Both DRACO and capVTE
are cross platform. Currently, the virtual laboratory only concerns spacecraft-plasma
interactions. Future work will expand the virtual testing laboratory into other areas of
spacecraft-environmental interactions.

Acknowledgments

The development of the DRACO code is supported by Air Force Research Laboratory at Edwards AFB
through a grant from ERC Inc.

References

L. Brieda, J. Pierru, R. Stillwater, and J. Wang, "A Virtual Testing Environment for Electric Propulsion",
AIAA 2003-5020,2003.

S. Doss,S. and K. Miller, "Dynamic AD1 Methods for Elliptic Equations", Siam J. Numer. Anal., 16(5),
~ ~ 8 3 7 4 5 5 , 1 9 7 9 .

J. Douglas and J. Gunn, "A General Formulation of Alternating Direction Methods: Part I. Parabolic and
Hyperbolic Problems", Numerische Mathematik, 6, pp428-453, 1964.

R. Ewing, 2. Li, T. Lin, and Y. Lin, 'The immersed finite volume element method for the elliptic interface
problems", Mathematics and Computers in Simulation, 1999.

D. Hewett, W. Larson, and S. Doss, "Solution of Simultaneous Partial Differential Equations using
Dynamic ADI: Solution of the Streamlined Darwin Field Equations", J. Computational Physics, 101,
ppl l-24, 1992.

T. Lin, Y. Lin, R.C. Rogers, and L.M. Ryan, "A rectangular immersed finite element method for interface
problems", In Proceeding of the 2nd International Workshop on Scientific Computing and Applications,
Kananaskis, Canada, May 28-June 1,2000.

J. Wang, J., D. Kondrashov, P. Liewer, and S. Karmesin, "3-D Deformable Grid Electromagnetic Particle-
in-Cell for Parallel Computers", J. Plasma Physics, 61(3), pp367-389, 1999.

J. Wang, D. Brinza, and M. Young, "Three-Dimensional Particle Simulation Modeling of Ion Propulsion
Plasma Environment for Deep Space I", J. Spacecrafi & Rockets, 38(3), pp433-440,2001

J. Wang, J. Polk, J. Brophy, and I. Katz, "3-D Particle Simulations of Ion Thruster Optics Plasma Flow and
Grid Erosion", J. Propulsion & Power, 2003a (in press).

J. Wang and T. Lin, "The Immersed Finite Element Method for Plasma Particle Simulation", AIAA 2003-
0842,2003.

J. Wang, R. Kafafy, and L. Brieda, "An iFE-PIC Simulation Model for Plume-Spacecraft Interactions",
AIAA 2003-4874,2003b.

T. Westermann, "Localization schemes in 2D boundary-fitted grids", J. Computational Physics, 101, p307,
1992

CAVE

/ Network

Simulation Engine Virtual Testing Environment

Figure 1 Virtual Testing Laboratory block diagram

Figure 2 The 3-D interface problem domain

Figure 3 The Cartesian-tetrahedra1 cell used by IFE-PIC and intersection topologies of a tetrahedral element

Figure 4 CapVTE desktop interface. Left: single user viewing multiple data objects. Right:
multiple users connected through network viewing the same data object.

Figure 5 The Virginia Tech CAVE faciiity(1eft) and immersed visualization inside CAVE (right).

Figure 6 A model satellite configuration generated by CAD as simulation input.

Figure 7 Left: simulation domain with Cartesian primary mesh. Right: interface
cells from satellite surface intersection with the Cartesian mesh.

Figure 8 3-D ion thruster plume simulation by the DADI-PIC module: potential contours

Figure 9 3-D ion thruster plume simulation by the IFE-PIC module.
Left: potential contours. Right: charge-exchange ion trajectories.

