
Development of the Starfish Plasma Simulation Code

and Update on Multiscale Modeling of Hall Thrusters

Lubos Brieda∗

Particle In Cell Consulting LLC, Falls Church, VA 22046

Michael Keidar†

The George Washington University, Washington, D.C.

This paper summarizes recent development on a multiscale approach for analyzing Hall
thrusters. The approach is based on the thermalized potential model utilized in codes such
as HPHall. However, instead of relying on analytical expressions for the cross-field electron
mobility, the mobility is computed self-consistently with a kinetic code. In addition, a two
dimensional code is used to study the ion dynamics in the sheath. In this update, we
discuss the numerical model used by these two modules. Integration of these codes into a
single end-user product required development of a replacement axisymmetric solver. The
new code, a generalized plasma solver Starfish, is also described. The paper then presents
latest results. These include study of diffusion processes which indicates that synergetic
effects play an important role in electron transport. We also investigate the sheath in the
presence of an inclined magnetic field, and find that for large angles, the sheath collapses,
and ions are accelerated away from the wall.

I. Introduction

Hall thrusters are spacecraft propulsion devices that utilize an applied magnetic field to create thrust.
Despite over 40 years of flight heritage, the community still lacks a tool capable of predictively modeling

these devices. Contributing to this difficulty is the presence of multiple spatial scales at which physics of
importance occurs. Example of one such effect is the lack of a general model for describing diffusion of
electrons across magnetic field lines. The classical model for electron cross-field mobility is solely driven by
collisions of electrons with heavy ions and atoms. The model does not take into account walls, non-steady
discharge, and non-uniformities in temperature. This model is also insufficient to reproduce the anode
currents observed experimentally. Additional models for capturing some of the non-classical processes have
been incorporated into existing codes with somewhat mixed results. The reason for the discrepancy arises
from the fact that electron transport is inherently a kinetic process occurying on the spatial scale of electron
motion. The details of importance are lost in the transition to the macroscopic world described by the
mobility models.

Due to numerical limitations, it is not feasible to model real-sized Hall thrusters while resolving details
of electron motion without resorting to non-physical adjustments of electron mass or plasma permittivity.
Instead, the common approach for modeling these devices is based on the thermalize potential model (TPM)
outlined by Morozov,1 and later implemented by Fife in HPHall.2 These codes assume that since in a
magnetized plasma a D‖ >> D⊥ anisotropy exists in the diffusion coefficient, the magnetic field lines
become lines of constant temperature Te and thermalized potential φ∗. The dimensionality of the problem
is thus reduced to one-dimension, since only the characteristic values need to be computed. These values are
functions of the magnetic field line, Te = T(λ) and phi∗ = φ∗(λ). HPHall utilizes two sets of computational
meshes. Ion and neutral dynamics is computed on an elliptic quadrilater mesh, with both species treated
by the particle-in-cell method. The kinetic treatment allows HPHall resolve the ion velocity distribution
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function self-consistently. The electron conservation equations are solved on a ”lambda mesh”, in which the
radial grid lines correspond to the magnetic stream lines. The cross-field electron velocity appears in the
momentum and energy equation and is obtained from the Ohm’s law,

ue,n̂ = −µe,⊥
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Here, µ⊥ is the electron mobility across the magnetic field discussed previously. The model used by the
original HPHall is

µe,⊥ =
µ

β2
e

+KB
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where µ = |q|/mνea is the classical mobility, β = ωc/νen is the Hall parameter, and KB is the Bohm
coefficient, controlling the strength of the anomalous Bohm mobility (the second term in equation 2). What
can be immediately noted is the absence of kinetic effects in this relationship. The Bohm term is independent
of the electron or ion population and is a simple function of the magnetic field strength. Electron details
appear only in the form of the electron-atom collision frequency νea. In the recent years, the model had
been extended to include near-wall conductivity,3,4 shear-based transport,5 and zones of low and high
mobility.6 These models suffer from the same limitations as the original formulation. To illustrate this,
let’s consider the near wall conductivity (NWC). The additional electron current due to wall interactions is
assumed to scale with Γe,s = γΓe,p, where the two fluxes correspond to the secondary (reflected and true
emitted secondaries) and primary (incident) electrons. The secondary electron emission coefficient scales
with electron temperature, γ = γ(Te), however only a single characteristic temperature is considered. As
has been demonstrated previously,7,8 electron temperature in Hall thrusters deviates from Maxwellian and
is anisotropic, Te,⊥ 6= Te,‖. Bulk of electrons are screened from the wall by a potential gradient with only
the energetic particles being able to penetrate to the wall. The yield of secondary electrons is governed by
the high energy tail of the electron distribution function, and not an average temperature.

Figure 1. The setup for a typical Hall thruster simulation based on the thermalized potential approach.

Figure 1 graphically illustrates the thermalized potential model as applied to the Princeton Cylindrical
Hall Thruster.9 This figure also shows several important components of a Hall thruster, including the anode
and the cathode. A representative λ mesh is superimposed over the HPHall simulation. It should be noted,
that the λ mesh constructed by HPHall has a variable number of partitions along each field line and thus does
not form an actual topological domain. The illustrative mesh used in this figure uses the average number of
radial partitions. The electron energy equation is solved only on this λ mesh. The output from the solver is
Te(λ) and φ∗(λ), where the second term is known as the thermalized potential. Just like temperature, φ∗ is
constant for each field line. The radial variation in plasma potential is obtained from φ = φ∗ + kTe/e ln(ne)
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assuming quasi-neutrality everywhere, ne = ni. Constant potential is applied upstream of the mesh, while a
linear interpolation to ground is used downstream.

A. Multiscale Formulation

The thermalized potential model (TPM) is attractive for modeling Hall thrusters. It is computationally
efficient since only several hundred computational cells are required (typical HPHall simulations utilize
domains with approximately 50 × 30 cells). In the PIC method, the number of required particles scales
directly with the number of cells, since several particles are required per cell to characterize the local VDF.
Also, since the simulation progresses on the time scale of ions, ony several tens of thousands steps are required
to resolve the breathing mode oscillations. A fully kinetic simulation, on the other hand, requires tens of
thousands simulation cells to resolve the local Debye length, significantly higher particle counts, and time
steps on the scale of electron cyclotron frequency. Even for a miniaturized thruster, this calls for the use of
a large supercomputer.

The TPM model is also physically sound. On the spatial scale of ions, electrons are seen to respond
instnteneously and as such, it is reasonable to describe them with a fluid model. The approach however
suffers from two shortcomings. First, the fluid tretment of electrons coupled with the simplified analytical
mobility results in the aforementioned under-prediction in anode current. Secondly, the universal quasi-
neutrality assumption prevents thecode from resolving the near wall ion dynamics. The direct manifestation
of this shortcoming is the inablity of ions lost to the wall to reach the Bohm velocity, which then necessitates
the need for additional post-processing on the impact ion velocity.10

In this paper we discuss an alternative approach for modeling Hall thrusters based on a multi-scale
formulation. Our formulation attempts to address these two shortcomings while retaining the computational
efficiency of the TPM. First, instead of utilizing analytical models for µ⊥, our approach computes the cross-
field mobility self-consistently by considering only the first principle laws. The calculation is performed by
treating the electrons as kinetic particles and simulating their orbits about the magnetic field line. Mobility is
obtained from the speed at which the guiding center diffuses, µ⊥ = vgcE⊥. What distinguishes our approach
from a fully-kinetic thruster simulation is that only a subset of the domain is considered. The thermalized
potential solver requires the value of µ⊥ only at the spatial locations corresponding to grid nodes of the λ
mesh. Since in a Hall thruster the electrons are magnetized, each magnetic field line can be thought of as an
independent domain. Coupling between the magnetic field line domain and the global discharge is provided
by E⊥, and the heavy particle densities and velocities, na, ni, and ui. As such, we can obtain mobility
self-consistently by considering only a small number of magnetic field lines. The number of λ grid lines in a
typical HPHall simulation is on the order of 20. By utilizing modern processor multi-core architecture, we
can simulate multiple field lines in parallel. Further reduction in computational effort is possible by reducing
the number of analyzed locations and simply interpolating values onto the intermediary λ lines. The second
shortcoming is related to the plasma-wall interface. In order to resolve ion wall flux and, more generally, the
ion motion in the sheath, the code must take into account the deviation from quasineutrality in the sheath.
The Poisson’s equation, ∇2φ = −ρ/ε0, must thus be solved. This requires a mesh capable of resolving the
Debye lenght λD. Since this solver only address the near-wall region, the spatial dimensions are reduced,
and the solution can be obtained on a standard workstation in the matter of minutes. We use this model
to correct the wall fluxes from the TPM code. Since ions impacting the wall recombine are are effectively
removed from the simulation, the coupling is one-way only.

Figure 2 presents a graphical representation of our multiscale approach. We first use a TPM solver and the
standard mobility model given in Equation 2 to obtain the initial solution. Since Hall thruster discharges
reach only an oscillatory-type steady state, this initial solution corresponds to properties averaged over
several breathing mode oscillations. We next use a kinetic code Lynx to compute the mobility along the
required magnetic field lines. The self-consistent mobility is then used to obtain a new thruster solution. The
process repeats until convergence, ∂µ⊥/∂t ≤ εtol. The resulting solution is subsequently used to establish the
bulk-plasma boundary for 2D sheath code used to study ion motion and erosion in the sheath. In addition,
ions exiting the thruster in the TPM simulation can be sampled to obtain a discretized source model for a
electric propulsion plume modeling analysis. This step, which is not addressed in this paper, is described in
more detail in 8.

The general concept of the multiscale approach has been reported previously in 11,12. In this paper we
discuss the latest developments. We first provide details of the Lynx kinetic code as parts of it had gone
significant changes from the initial version. Our prior proof-of-concept studies utilized HPHall as the TMP
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Figure 2. Schematic of the multiscale approach

solver. As detailed in the following paragraphs, a number of issues lead to our decision to develop a new
solver. We have began work on a general 2D plasma / rarefied gas solver Starfish. This code is described
next. Subsequently, we describe details of the recently developed 2D sheath code for analyzing ion wall flux
as well as some recent models for the plasma-wall interface. The paper then continues with results. We first
present findings from a mobility study indicating that synergystic effects play an important role in transport.
We also discuss the near-wall ion motion for a thruster with a steeply inclined magnetic field lines. The
paper is concluded with example result obtained with the Starfish code.

II. Kinetic Modeling of Electron Transport

This section provides a general overview of the kinetic code Lynx used to kinetically compute electron
transport across magnetic field lines. The code is described in more detail in 8. Lynx uses a hybrid version
of the particle-in-cell (PIC) technique. In this formulation, only electrons are simulated. Ions and neutrals
are assumed to be stationary and are described by a fixed background density. In a Hall thruster, ions are
not magnetized, and are continuously streaming across the field line. Keeping ions stationary imposes the
assumption that mobility develops rapidly in response to a change in global discharge parameters. This is
believed to be a valid assumption, since in the frame of reference of ions, electrons respond instantaneously
to disturbances due to their light mass.

The input for a Lynx simulation is an HPHall-like λ mesh containing the global discharge parameters,
ni, na, E⊥, B, Te, and ui,⊥. The code assumes that ni is the total charge-averaged ion density, i.e., ion
charge density ρi = eni. The main handler then launches an individual simulation for each radial grid line
of the input λ mesh. The simulations are performed in parallel utilizing Java’s native support for multi-
threading. Each 1D simulation begins by the code creating electron particles following the prescribed ion
density, ne = ni everywhere. The parallel component of electric field E‖ is determined self-consistently
by solving Poisson’s equation, ∇2φ = −ρ/ε0 at each time step. Electrons are advanced according to the
leapfrog method. The code initially runs in a sheath-forming mode in which electrons impacting the walls
are absorbed and collisions are ignored. This mode continues until a well-formed sheath j = 0 forms at both
walls. Since the high-energy electrons will be preferentially lost during this sheath formation stage, the code
subsequently resamples the electron population to regenerate the high-energy tail.
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The simulations then continues in a normal mode in which a detailed wall and collision models are
employed. Mobility is recovered from the speed with which electron guiding centers diffuse. Three primary
transport mechanisms are considered: particle collisions, wall interaction, and electric field instabilities.
Collisions are modeled with a Monte Carlo approach and several collisional processes, such as momentum
transfer (scatter), Coulomb collisions, ionization, and excitation, are included. Wall interactions are modeled
following the approach of Sydorenko.13 Support for modeling azimuthal waves is also included, however, this
mechanism is generally not used. Computational times are on the order of minutes for a typical simulation
consisting of 100,000 particles and 20,000 time steps. Vast majority of the computational effort is spent
averaging the results, since the steady state is typically reached within the first 1000 time steps.

A. Computational Domain

The computational domain for each 1D analysis consists of a curved magnetic field line connecting the inner
and the outer thruster wall. Along this domain, the coordinate system consists of two components: the
distance s along the field line, and a coordinate system x− y in the plane normal to the line. The distance
is measured from the inner wall. The other two coordinate directions, ~̂ex and ~̂ey are normal to ~̂es. These

coordinates are defined such that ~̂ex lies in the r − z plane of the thruster, while ~̂ey lies in the r − θ plane.
In the code, it is assumed that electron orbital planes rotate automatically with the magnetic field line. As
such, the actual profile of the field line is not required in the particle push. The magnetic field geometry is
however used to compute the field gradient, ∂B/∂s by differentiating the supplied B = B(s) magnetic field
profile. The incidence angle at the inner and the outer wall is also of importance when considering injection
of secondary electrons at the wall.

The field line is discretized into a number of equidistant computational segments (one-dimensional cells)
in accordance with the particle-in-cell (PIC) method. The length of each segment is ∆s. This cell spacing
is set such that λD,min = h∆s, where λD,min =

√
ε0kTe/np,maxe2 is the minimum Debye length along the

entire simulation domain, and h is a user provided parameter. Typically, h = 2 is used, resulting in two
cells per Debye length. Debye length is calculated using the constant initial electron temperature, which is
assumed to be constant along the field line ∂kTe/∂s = 0 and isotropic, kTe,⊥ = kTe,‖. It should be noted
that prior analysis of Sydorenko7 as well as our own work indicate that electron distribution function in Hall
thrusters becomes anisotropic due to the presence of cold secondary electrons. In the simulation, the kinetic
EEDF is characterized, however this value is used only for diagnostic purposes. New electrons are sampled
from the initial distribution.

B. Potential Solver

Lynx solves the electric field in the parallel direction, E‖ self-consistently from the Poisson’s equation,

∇ · ~E = −∇2φ = ρ/ε0. The discretized form of this equation is determined from the finite volume approach.
We can define a control volume around each simulation node and perform the integration∫

V

∇ · ∇φdV =

∫
V

− ρ

ε0
dV∫

S

∇φ · n̂dA ∼=
4∑
i=1

∇φ · n̂dA = − ρ

ε0
r∆x∆y∆s

−∇φ1r1 +∇φ3r3 = − ρ

ε0
r∆s (3)

where r = f(s) and ∇φ2 and ∇φ4 are zero since for the one dimensional case we have ∂φ/∂x = 0. Axisymme-
try dictates ∂φ/∂y = 0. Here the indexes correspond to the control volume face, starting with the bottom face
and continuing around the control volume counter-clockwise. We next need an expression for the two deriva-
tives ∇φ1 and ∇φ3. These are obtained using the scalar form of the divergence theorem,

∫
S
∇φdA =

∮
φn̂dl.

For our formulation this yields the standard finite difference derivate, ∇φ1 = (φj − φj−1)/∆s~̂es and

∇φ3 = (φj+1 − φj)/∆s~̂es. Substituting these expression into Eq. 3 gives

φj+1 − φj
∆2s

rj+1/2

rj
− φj − φj−1

∆2s

rj−1/2

rj
= − ρ

ε0
(4)
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For the case of a fully radial magnetic field line where s ≡ r and ∆s ≡ ∆r, this expression simplifies to

φj+1 − 2φj + φj−1
∆2s

+
1

r

φj+1 − φj−1
2∆r

= − ρ

ε0
(5)

which is the standard discretization of ∇2
r = ∂2/∂r2 + (1/r)∂/∂r. The electric field ~E = −∇φ is obtained

by numerically differentiating the potential, E = (φj−1 − φj+1)/2∆s. This differentiation is independent of
the geometry. A one sided model is used along the walls.

C. Boundary Conditions

The expression given in Eq. 4 holds inside the simulation domain. This expression needs to be modified
along the walls to take into account the boundaries. Two types of boundary conditions are implemented in
the code: conductor and dielectric walls. Dielectric walls are of interest for the SPT-type thrusters. The
discretization along the inner wall can be determined by considering a small volume elements centered at
the j = 0 grid node. From Gauss’ law, we have∫

V

∇ · ~Eds dA =
Q

ε0
(6)

where Q is the total charge enclosed by the volume. Applying the divergence theorem and considering a
domain with the field varying in only a single direction, we obtain (E1/2 − E−1/2)dA = (σ + 0.5∆sρ)dA.
This formulation assumes that dA0 = dA1/2 = dA−1/2 = dA, i.e. a planar geometry. The variation in dA is
not considered in the code due to the small ∆s spacing between nodes and hence a negligible difference in
r. The area element can then be eliminated, giving the boundary condition

E1/2 =
φ0 − φ1

∆s
= σ +

1

2
ρ∆s (7)

The internal electric field, E−1/2 is assumed to be zero inside the dielectric. A more detailed treatment,
including the correction due to the varying r is found in.14 Since a potential solution is unique only up to
a fixed constant, at least a single Dirichlet boundary condition must be applied to define the problem. This
condition is applied by fixing the potential on the outer wall to 0 V, following the formulation in14 and.13

It should be noted that this approach appears to neglect the surface charge accumulated on the outer wall.
The outer surface charge is included by the condition of charge neutrality,

∫
ρdV +

∫
(σ0 + σnj−1)dA = 0.

The resulting system of equations produces a tri-diagonal matrix that can be easily solved using the direct
Thomas Algorithm. Electric field is then retrieved from ~E = −∇φ, or Es = (φj−1 − φj+1)/(2∆s). Tthis
method produces just one of three electric field components acting on the particle. The other two components
are E⊥ and Eθ. The first of these comes directly from the axisymmetric solution and is driven by the potential
drop along the thruster channel. The second, Eθ, is the electric field in the azimuthal direction. Assuming the
ideal axisymmetric case, this field is zero. However, azimuthal waves and additional oscillations oscillations15

have been previously observed experimentally. These waves are believed to be an important contributor to
electron transport. To investigate their role, Lynx includes an analytical harmonic oscillator that can be
used to modulate the azimuthal electric field. The magnitude is given by Eq = E0 + A cos(−ωt + ϕ). This
modulation is generally not used, however it is a useful tool for characterizing the influence of electric field
fluctuations on electron transport.

D. Particle Loading

The code contains two subroutines for generating particles: (a) quiet start and (b) random injection. The
quiet start method is used to initially populate the electron species. This method creates particles at node
locations such that ρ = ni − ne ∼ 0 (limited by the statistical weight of particles). If total electron and
ion charges Qe =

∫
s
eneds and Qi =

∫
s
nids are initially equal Qe = Qi this loading will result in ρ ∼ 0

everywhere. The initial potential energy of such a system
∫
s
ρφ ∼ 0 and the energy is determined by electron

temperature alone. The simulation begins by loading such a quasineutral system. Lynx uses a constant
specific weight (the number of real particles represented by a single simulation macroparticle). Although
other researchers16 indicate that a variable specific weight should be used to represent the high energy tail
of the velocity distribution function, such an approach was not used at present due to it imposing its own
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difficulties. Namely, variable weight models typically rely on methods for combining and splitting particles.
Care must be taken when combining two particles of non-equal velocities to assure that numerical changes
in the VDF are not accidentally included. For this reason, a constant specific weight model was used, with
implementation of the variable weight model identified as a possible future enhancement. The ability of this
model to resolve the high energy tail is further discussed in the next chapter.

The specific weight of each electron is determined by integrating the ion density along the field line to
determine the total number of ions in the 1D domain, Ni =

∫
s
nidV . The specific weight is then set such that

a user-defined number of macroparticles M0 will represent this count, we = Ni/M0. The quiet start routine
begins loading this number of particles from center of the magnetic field line. Particles are first loaded at the
location of the center node(s), and the loading continues towards the boundaries until the specified number
of particles is loaded. The number of particles to load at each node is given by p = ni,j∆V/we, where ni,j
is the ion density at the j−th node and ∆V is the cell volume. 0.5∆V is used along the boundaries. Since
the particle count p will in general be non-integral, the scheme keeps a track of fractional particles and an
additional particle is loaded whenever the fractional count reaches unity.

(a) Electron and ion densities, and charge density for
Qe = 0.9Qi

(b) Logarithmic plot of high energy velocity tail

Figure 3. Particle loading

The importance of this scheme is its ability to load a sheath-like electron distribution. In a wall-bounded
plasma, Qe < Qi due to a faster initial depletion of electrons in the sheath. The ratio of Qe/Qi at steady
state is not known a priori and must be determined self-consistently. The approach used by the code is to
first load an electron population with Qe = Qi and allow the simulation to establish a steady state marked
by zero wall current. The charge ratio then becomes Ne/Ni, assuming Zi = 1. The number of electrons at
steady state is recorded and subsequently used to reload the electron population. Reloading is accomplished
by first destroying all particles and then injecting a new population with a reduced electron count. This
reloading allows the simulation to replenish the high velocity tail of the electron EDF that is initially lost
to the wall. Since electrons are loaded from the center out, particle loading with Qe < Qi will result in
quasineutrality in the bulk, and a near-wall region where Qe = 0. This is demonstrated in Figure 3. This
picture shows electron loading for an analytical quadratic ion density variation. The blue curve shows the
ion density, while the red curve shows the neutral density. In this loading, Qe = 0.9Qi was used. The black
curves show the charge density ρ = e(ni−ne). The effect of particle count is shown by the two black curves.
Increasing the count reduces the noise in ρ. However, for both cases ρ ∼ 0 in the bulk. It should be noted
that this loading scheme assumes that the sheaths at the inner and the outer wall are symmetric.

Related to particle loading is the internal characterization of a fully developed plasma sheath. The total
net current flux to the walls is Γtot = Γouter+Γinner, where each flux consists of ion, electron, and secondary
electron fluxes, Γ = Γi − Γe + Γs. The ion flux is obtained by assuming that ions enter the wall with Bohm
velocity, vb =

√
kTe/mi. Currently, the actual ion velocity in the near wall region obtained from the 2D

code is not taken into account. The sheath is established once Γnet >= 0.
The above described method is used to load the initial electron population. It is not used during the

normal simulation to replenish electrons lost to domain boundaries. New particles are sampled at a random
spatial location, with the probability following the prescribed ion density. This scheme works by selecting a
random position along the field line, s = RL where R is a random number and L is the domain length. The

7 of 30

American Institute of Aeronautics and Astronautics



probability of a particle being found at this position is obtained from P = Ni(s)/
∑
Ni. This probability is

compared to another random number R2. If P ≥ R2, a particle is placed at this location. Otherwise, the
process continues.

E. Loading a Prescribed VDF in Magnetized Plasmas

The particle sampling routines described above select the initial s position of the particle. The initial
velocity components v⊥ and vθ are obtained by sampling the Maxwellian distribution function at the specified
temperature, kTe. Isotropic distribution is used in particle loading. In the parallel direction, the velocity
component is given by the standard one-dimensional Maxwellian distribution function

fM = (m/2πkT )1/2 exp
(
−v2/v2th

)
(8)

Particles are sampled from this distribution by selecting a random velocity in the −6σ : +6σ range and
evaluating the probability P = exp(−v2/v2th). The process continues until P ≥ R. In the perpendicular di-
rection, the velocity component is obtained by a combination of two independently sampled one-dimensional
distributions, v⊥ =

√
f2M1 + f2M1. Once the desired v‖ and v⊥ velocity components are known, the actual

particle is created. As will be discussed next, Lynx uses the position of guiding centers to determine mobility.
As such, it is imperative that particles are correctly placed on an orbit centered at xgc = 0. In addition,
the loading function must assure that the correct velocity distribution function is retrieved when particle
velocities are averaged over an orbital period. Both of these requirements can be satisfied by placing the
particle at a random phase location along the analytical orbit. The velocity components of a particle drifting
in an (E⊥~ex)× (B~es) field are given by17

vx = v⊥ cos(ωct) (9)

vy = −± v⊥ sin(ωct)−
E⊥
B

(10)

These expressions can be integrated to obtain

x = rL sin(ωct) (11)

y = ±rL cos(ωct) (12)

where rL = v⊥/ωc is the Larmor radius and ± follows the particle charge. The E⊥/B component is ignored
in the position, since the position in the azimuthal direction is not relevant.

F. Particle Motion

Motion of charged particles in an electromagnetic field is governed by the Lorentz force,

~F = m
d~v

dt
= q

(
~E + ~v × ~B

)
(13)

Care must be taken when integrating this equation since velocity appears on both sides of the equation. The
obvious integration by the forward method, ~vn+1/2 = ~vn−1/2+q/m( ~E+~v× ~B)∆t will result in a non-physical
energy gain and the particle describing a spiral orbit. Lynx follows the method of Boris18 which described
an elegant alternative to the matrix inversion required by an implicit solver. This method splits the push
into a half acceleration, two rotation steps, and another half acceleration.

In the presence of a converging magnetic field, a mirror force, FM = −µM (∂Bs/∂s) retards the motion
of particles entering a region of an increasing magnetic field strength. The µM term in the above equation
is the magnetic moment. It is given by µM = (1/2)mv2⊥/B. If the mirror is particularly strong, the particle
will reach a position where v‖ = 0 and the particle will be reflected. In Hall thrusters, mirror arises in
thrusters utilizing cusped field configurations, or near the centerpole of the CHT due to the geometry of the
device. The total energy of a particle in a magnetic field must be conserved, indicating that as the parallel
component of velocity decreases, the tangential velocity component must increase to keep the total kinetic
energy constant,

d

dt

(
1

2
mv2‖ +

1

2
mv2⊥

)
= 0 (14)

8 of 30

American Institute of Aeronautics and Astronautics



The Boris algorithm by itself does not resolve this effect. The reason is due to the fact that this relationship
arises from the conservation of energy, while the Boris method is integrating the momentum equation. Instead
it must be superimposed on the integrator. In the code, the dvM = (1/m)FM∆t parallel component is first
computed. The new perpendicular velocity is computed from v2⊥ = v20 − (v‖ + dvM )2. The x and y velocity
components are then rescaled accordingly. Particle position is updated using the Leapfrog method,

~xn+1 = ~xn + ~vn+1/2∆t (15)

where the velocity is integrated from ~vn−1/2 to ~vn+1/2 according to the Boris scheme discussed above.

G. Wall Model

In a bounded discharge, majority of electrons is confined away from walls by the potential drop in the sheath.
Only electrons with a sufficient energy to overcome the sheath drop will impact the wall. Electrons with
insufficient energy to reach the wall will be reflected by the sheath. Due to surface roughness effects, the
near wall sheath is expected to follow wall contours and be generally non-laminar. As such, it is possible
that even electrons not actually reaching the wall will be diffusely scattered by the wall. This effect is not
modeled in the present work and remains as a topic for future investigation. Instead, only particles actually
impacting the wall are considered. In this work, the model of Sydorenko13 was implemented. This model
provides a curve fit to available experimental and analytic yields and takes into account elastic reflection,
diffuse reflection, and yield of true secondary electrons. The secondary electron emission yield follows the
analytical Vaughan fit.

The emission yields are plotted in Figure 4. This plot was generated by colliding 5,000 particles with a
constant energy level W for each 1 eV increment in the 0 to 160 eV range. For W < 13 eV the wall yield is
dominated by the elastic reflection of the primary electrons. Even though these reflection conserve energy,
they can contribute to transport if the reflection is non-specular due to surface roughness. For W > 30 eV,
the wall yield is dominated by the emission of secondary electrons, which exceeds unity at W1 = 52 eV.
High yield of secondary electrons can result in development of a non-planar saturated sheath which can trap
emitted electrons in the near wall region. However, in the discharges studied in this work, kTe/e < W1.

Figure 4. Variation in wall yield with incidence energy. This plot can be compared with Figure 3.4(a) in
Sydorenko.13

Secondary electrons are injected into domain following the cosine distribution, ~v = vM n̂ where

n̂0 = sin(θ) cos(ξ) (16)

n̂1 = sin(θ) sin(ξ) (17)

n̂2 = cos(θ) (18)

with

θ = sin−1(R1) (19)

ξ = 2πR2 (20)
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and vM is a velocity sampled from the Maxwellian distribution at the wall temperature. Maxwellian dis-
tribution was used instead of the perhaps more accurate effusion model for simplicity. R1 and R2 are two
random numbers.

H. Particle Boundaries

Particles can leave the simulation domain in one of two ways: (a) by being lost to the walls or (b) by scattering
sufficiently far from the magnetic field line. The first method is self-explanatory for a conducting wall. For
the case of a dielectric wall, this loss corresponds to an electron attachment to the surface, contributing to
the surface charge density, σ. The details of current collection are outlined in the following section.

The second method is merely a computational tool used to repopulated the initial velocity distribution
function. In a real device, electrons are continuously traversing from one magnetic field line to another
until they arrive at the anode. If the distance between field lines is taken to be rL, the energy an electron
gains in the transport is given by W = E⊥rL. For the Hall thruster discharge, this energy gain is on the
order of one to several tens of eV and corresponds to the initial electron temperature at the field line. If
an electron guiding center diffuses a significant distance from the starting position, it can be assumed to
no longer correctly represent the population at the studied location. The size of the bounding envelope is
somewhat arbitrary and can be set by the user. The size is set as d = frL,max where rL,max is the Larmor
radius computed at the smallest value of magnetic field. Although an argument could be made for using
f = 1, such a value will immediately (assuming uniform B) remove all particles undergoing a scattering
event. As such, f needs to be set to a sufficiently large value to allow secondary electrons to complete at
least one oscillation between walls. Simulations presented in this work used f = 5.

I. Current Collection

Surface charge σ collected on the walls of a dielectric material contributes to the boundary conditions in
the potential equation. The wall current at each wall consists of three terms: j = ji − je + js where the
terms on the right hand side are the ion, primary electrons, and secondary electron current densities. In
this formulation no distinction is made between true secondaries and reflected primary electrons. For a
mirror-like wall, je = js and the contributions cancel. The ion current density can be estimated from Bohm
velocity. Note, this assumes that the sheath has not inverted; and that ions are entering the sheath in
direction normal to the wall with the Bohm speed. This is often not the case, especially once novel thruster
configurations utilizing magnetic lens are considered. SEE yield greater than unity can also result in an
inverted sheath. Taking sheath inversion and sheath collapse into account remains as future work. In the
simple Bohm model, the ion term becomes ji = en0ui. For simplicity, n0 = ni, the average ion density, is
used. Again, determination of the actual sheath density remains as future work.

The electron terms are obtained from the kinetic electrons. In the code, the one dimensional volume
scaling is used, n = N/∆s in the bulk and n = N/0.5∆s along the boundaries. N = wsp is the number
of physical electrons carried by each electron macroparticle. Electron current density then becomes je =
2ewsp/∆s~u · n̂. Similar expressions are written for the reflected and secondary populations. Surface charge
collection begins at steady state and is incremented at each time step from σ = σ + j∆.

J. Collisions

Collisions are an important process affecting the diffusion of electrons. The collision types considered in
the code are momentum transfer, ionization, excitation, and Coulomb collisions. The Monte Carlo Method
(MCC) is used to determine collision probability. MCC is a fast method that is applicable in situations where
the target population is not significantly affected by the collision events. MCC works by iterating through
the list of source particles, and for each particle computing the collision probability. The probability is given
by P = 1− exp(−n0σ0g∆tc). Here σ0 is the total collision cross-section, n0 is the density of the target gas, g
is the relative velocity (due to the high velocity of electrons, g = ve), and ∆tc is the time difference between
collisions. Typically, collisions are computed once every four time steps, ∆tc = 4∆t for performance and
statistical error reduction reasons.

The collision probability is compared to a random number R. If P ≥ R, a collision occurs. Next, the
code needs to determine which collision type occurred. This is done by calculating relative collision cross-
sections,

∑types
i=1 σi/σ0 = 1. The respective σi ranges are stored in an array such that (σi−1 : σi−1 + σi)i.
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A second random number is then drawn. Location of this random number in the array of relative sigmas is
then determined, and the collision handler for the respective process is called. The collision handler operates
solely on the particle velocities. Particle positions are not affected by the collision. Cross-sections for the
considered collision types are plotted in Figure 5.

Figure 5. Collision cross-sections vs. energy. Scatter, excitation, and ionization models from Szabo.19

K. Momentum Transfer Collisions

An important collision process in Hall thruster discharges are the momentum transfer collisions between
electron and neutral atoms. These collisions are due to electrostatic interaction between the electron and
the atom, where the interaction forces arises from the polarization of the atom. An analytical model for
polarization scattering is given by Lieberman,20

σL = πb2L =

(
παpq

2

ε0mR

)1/2
1

g
(21)

where αp = αRa
3
0 is the polarizability (in units of volume), αR is a proportionality constant, and a0 = 53

pm is the Bohr radius. The reduced mass mR is given by mR = mema/(me +ma) ≈ me for electron-atom
collisions. The relative velocity g = |ve − va| ≈ |ve|. The relative proportionality is obtained using available
Xenon polarization data, which list αp = 4 Å3, resulting in αR = 26.9. However, when this model is compared
to experimental measurements, it is seen to underpredict the collision cross-section by approximately half
order of magnitude except in the low energy region, where it dominates over the experimental fit. The fit
to experimental data, as utilized by Szabo19 is seen in Figure 5 in blue. The analytical polarization profile
is shown with the dotted blue curve. For this reason, Szabo’s model is used in this work to compute the
cross-section. The expression for the curve is available in the Appendix in.19

Electron scatter collisions are modeled by colliding the electron with a virtual target neutral sampled
from the background population at the background temperature. The algorithm is based on the approach
described by Bird.21 The algorithm first computes the center of mass and a random deflection angle. The
post-collision electron velocity is then updated from

~v∗ = ~vm +
m2

m1 +m2
g∗ (22)

where ~vm is the center of mass velocity and g∗ is the post collision relative velocity vector. It should be
noted that the magnitude of g is preserved in the collision, |g| = |g∗|.

L. Ionization and Excitation Collisions

Szabo’s models are also used for the ionization and excitation collisions. This model uses polynomial fits
to experimental data which are provided in the Appendix of 19. These models are not included here for
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brevity. Ionization collisions occur only for electrons with energy grater then Wiz = 12.1 eV. The energy of
the colliding electrons is reduced by Wiz and their post collision direction is assumed to diffuse in the 3D
space. Similarly, for excitation collision, σ = 0 for Wex < 8.12. The collision process is modeled by reducing
the electron energy by a random amount for Wex < R < Wiz. Again, the post collision direction is selected
randomly.

M. Coulomb Collisions

As indicated by Figure 5, Coulomb collisions are an important process at low energies. Unlike the previously
considered collisions, Coulomb collisions arise from the electrostatic attraction or repulsion between charged
particles and thus the interaction force magnitude scales with the inverse of the distance. Without considering
an upper bound, these collisions would result in an infinitely large cross-section. For this reason, λD is
selected as the typical upper bound over which the interaction force is integrated. This then leads to a
very large cross-section, σ ∼ πλ2D. However, vast majority of Coulomb collisions are small angle events. A
common approach is to approximate the large number of small angle collisions with a corresponding large
angle cross-section. Lieberman20 gives the large-angle cross-section as

σ90 =
8

π
b20 ln Λ (23)

where ln Λ ≈ 10 for typical plasma discharges and b0 is the distance of closes approach, given by

b0 =
q1
q2

4πε0WR (24)

where WR = 1
2mRv

2
R is the center of mass kinetic energy.

Since this cross section approaches infinity as vr → 0, the code limits minimum vr to 104 m/s. Electron-ion
Coulomb collisions are modeled using the same algorithm utilized for electron-neutral momentum transfer
collisions, where a virtual target ion is sampled from the background population. This approach is not
valid for electron-electron interactions. Electron-electron Coulomb interactions are the primary mean by
which electron velocity distribution functions thermalize and hence it is important to consider both source
and target particles in the collision event. A modified MCC algorithm was implemented to handle this
interaction event. Prior to computing collision probabilities, electrons are grouped by cell. Next, during a
collision event, a target electron is picked randomly from the electrons located in the same cell as the source,
assuring the target particle is different from the source. Collision is then performed with these two particles,
and velocities of source and target are updated. Since this effectively results in a doubling of collisional
rate due to the MCC algorithm, the collision cross-section for electron-electron collisions is reduced by half,
b0,eff = 0.5b0.

N. Transport Calculation

The primary output from a Lynx simulation is the spatial variation in mobility along the magnetic field line,
µ = µ(s). Conceptually, the average drift velocity can be computed by averaging the particle perpendicular
component of velocity. Mobility can then be determined from µ = vd/E⊥. However, such an approach does
not work in practice due to statistical errors. The simulation noise in the computation of the average drift
velocity is on the order of µ. This noise arises due to the discretized nature of the particle push, the particle
traverse along the field line, and the averaging of velocities at nodal positions.

Instead, the drift velocity is computed from the speed with which guiding centers diffuse across the field
line. The x position of the guiding center, the point about which the particle orbits in the x − y plane,
center can be computed from xgc = 0.5(xmin + xmax), where the two positions on the right hand side are
the minimum and maximum x position attained by the particle. These values are continuously updated
by the particle integrator. Scattering events, such as collisions or wall interactions, result in the particle
orbit shifting to a new guiding center, which will be demonstrated by a shift in the x range. Guiding
center positions are checked once per orbit, and only particles that have completed at least one orbit since
birth are considered. Particle xmin and xmax values are reset during this operation. Particles undergoing a
transport event in the previous cyclotron orbit will have a guiding center intermediate of the initial and the
final position. The correct shift will be computed upon the subsequent calculation (assuming no additional
scattering events) due to particle x range reset. Once the position of the guiding center is known, the drift
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speed is obtained from vgc = ∆xgc/(tnow − tborn). The term on the right hand side is the time the particle
has been alive. Since in the code the initial xgc = 0, the shift is given by the actual guiding center position.
Mobility is then computed from µ = vgc/E⊥.

III. Starfish

Our previous effort12 utilized HPHall as the TPM solver. While HPHall allowed us to perform a proof-of-
concept study, a number of issues made it unsuitable for future use. First, HPHall is written in the structured
C programming language. Modern programming practices follow the object-oriented design as it leads to an
increased modularity and ease of maintenance. Our solvers are developed in the strongly objected-oriented
Java programming language. While coupling of C and Java is feasible, it is both non-trivial and impractical.
Secondly, the lack of a source code repository resulted in a number of competing versions of HPHall. In
addition, new models were added via compiler directives. Without a rigorous analysis of the source code
and the set of compiler flags used to build the exucatble, it is impossible to correlate simulation results to a
particular set of documented equations.

Figure 6. The desired (red, right) and the used (blue, left) cathode λ line.

We also encountered difficulties in applying HPHall to a non-annular thruster geometry. This issue
is illustrated in Figure 6. The magnetic field line on the right, shown in red, corresponds to the cathode
boundary as specified in the input file. For reasons not fully understood, HPHall adjusts the specified cathode
λ such that the field line intersects the inner wall at a grid node. Due to the convergence of magnetic field
lines at the centerpole of the CHT, a small offset in λ results in a significant shift of the actual boundary.
The boundary, as used by the code, is shown by the blue line. Our effort to expand the boundary into the
downstream direction was not successful. Since HPHall solves electron equations only up to the cathode
boundary, the inability to capture the cylindrical region excluded a significant portion of the thruster from
the detailed analysis. We have thus started development of a new 2D solver called Starfish.22 Although in
the present analysis Starfish serves the role previously occupied by HPHall, Starfish is being developed as a
general 2D plasma / rarefied gas solver with applications extending past Hall thruster analysis and including
processes such as plume modeling, plasma processing, contamination transport, and atmospheric discharges.

A. Code Structure

In development of Starfish we utilized lessons learned from the AFRL Coliseum project.23 The strength
of Coliseum lies in its flexibility, and we were interested in capturing this feature in Starfish. Starfish is
based on the concept of a “runnable module”. This module is a Java class that can be associated with a
specific X<element> in the XML input file. Each concrete implementation of the RunnableModule base
class implements a “process” function which is called whenever an XML element with the associated name
is encountered in the input file. The module then parses the user input and constructs appropriate data
structures. The object oriented design allows the main loop to manipulate these data structures without
requiring knowledge of their implementation.

The typical Starfish simulation input file is shown below. First several external files are loaded. The
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parsing of the input file is performed in two steps, with the first step simply replacing each <load> element
with the content of the file. This allows for an arbitrary separation of input settings, while also simplify-
ing reuse of common datasets such as material definitions or interactions lists. The content of these files
is discussed below. Potential solver parameters are specified next. This particular example utilizes the
thermalized electron model which is discussed in more detail below. Additional solvers implemented so far
include a linear and a non-linear Poisson solver, as well as the quasineutral Boltzmann inversion model.
The coefficient matrix for the Gauss-Seidel solver is obtained with the finite volume approach, allowing the
code to utilize non-rectilinear grids. The input file next specifies time control parameters. These include the
number of time steps along with the time step size, in seconds. The simulation is then executed with the
<starfish /> command. Finally, simulation results are outputted in the Tecplot format. The code contains
handlers for both 2D and 1D outputs. The 2D output is used for save results on the computational grid,
while the 1D output saves results along the boundary splines.

1 <simulation>

2 <!-- load input files -->

3 <load>materials.xml</load>

4 <load>boundaries.xml</load>

5 <load>domain.xml</load>

6 <load>sources.xml</load>

7 <load>interactions.xml</load>

8

9 <!-- load external magnetic field data -->

10 <load_field format="tecplot" name="bfield">

11 <file_name>2d_ave_tp.dat</file_name>

12 <coords>z,r</coords>

13 <vars>bfi=bz,bfj=br,lambda</vars>

14 </load_field>

15

16 <!-- set potential solver -->

17 <solver type="thermalized">

18 <bottom>symmetry_outside,symmetry_inside,inner_wall</bottom>

19 <top>outer_wall,thruster</top>

20 <anode_lambda>0</anode_lambda>

21 <cathode_lambda>6.79998e-06</cathode_lambda>

22 <nodes>10,12</nodes>

23 <cathode_kTe>5</cathode_kTe>

24 <cathode_phi>100</cathode_phi>

25 <power>100</power>

26 </solver>

27

28 <!-- set time parameters -->

29 <time num_it="0" dt="5e-8" />

30

31 <!-- run simulation -->

32 <starfish />

33

34 <!-- save results -->

35 <output type="1D" file_name="flux.dat" format="tecplot" />

36 <variables>influx.xe+, outflux.bn, erosion_rate</variables>

37 </output>

38

39 <output type="2D" file_name="field.dat" format="tecplot">

40 <variables>phi, t.e-, nd.xe, nd.xe+, u.xe+, v.xe+</variables>

41 </output>

42 </simulation>

B. Domain

The domain element is used to specify the extent of the computational domain. Starfish supports multiple
meshes. The present version leaves the responsibility of assuring the meshes describe a contiguous domain
with the user. Starfish supports only topologically structured meshes, however, the meshes can be either
rectilinear or quadrilateral. A quadrilateral mesh is formed by specifying a list of boundary splines forming
each of the four boundaries, as well as the number of nodes in the two spatial directions. The node positions
are then calculated in the internal domain by solving the elliptic equations ∇2l = 0 and ∇2m = 0 where l and
m are the two logical coordinates. The physical to logical mapping on the local cell-level of a quadrilateral
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mesh is

x = α1 + α2l + α3m+ α4lm (25)

y = β1 + β2l + β3m+ β4lm (26)

(27)

with the coefficients given by 
x1

x2

x3

x4

 =


1 0 0 0

1 1 0 0

1 1 1 1

1 0 1 0



α1

α2

α3

α4

 (28)

The x terms on the LHS correspond to the cell vertices.
As an example, the code snippet below specifies a uniform rectilinear and a quadrilateral elliptic mesh. It

should be noted, that in this paper we used a computational domain consisting solely of rectilinear meshes.

1 <domain type="rz">

2

3 <mesh type="uniform" name="annular">

4 <origin>0.0491, 0.0071</origin>

5 <spacing>5e-4, 3.35e-4</spacing>

6 <nodes>13, 18</nodes>

7 </mesh>

8

9 <mesh type="elliptic" name="downstream">

10 <left>exit_plane</left>

11 <bottom>symmetry_outside</bottom>

12 <right>downstream</right>

13 <top>thruster</top>

14 <nodes>35,13</nodes>

15 </mesh>

16 </domain>

C. Boundaries

Surface boundaries are specified in the <boundaries> element. Each surface in Starfish is described by a
linear or a cubic Bezier spline. The spline path uses syntax similar to the SVG (Scalable Vector Graphics)
notation, with the inclusion of special connector tags. Each spline must be given a name as well as material
if the spline describes a solid surface. The example below shows a linear and a cubic spline. A linear spline
consists of nodes joined by straight lines. The ”M” (move), ”L” (linear), and ”C” (cubic) commands simply
act to change the current mode, in a fashion analogous to SVG, and thus it is not necessary to repeat the
”L” command between segments. The inner_wall spline consists of two segments connecting three nodes.

1 <boundaries>

2 <boundary name="INNER_WALL" type="solid">

3 <material>BN</material>

4 <path>M 0.0551,0 L 0.0551,0.0071 anode1:first</path>

5 </boundary>

6

7 <boundary name="DOWNSTREAM" type="open">

8 <path>M thruster:last C 0.0853587,0.0146086 0.0884662,0.0069188 0.0891,0</path>

9 </boundary>

10 </boundaries>

The syntax for Bezier splines differs from the SVG implementation. While in SVG, cubic splines are
specified by providing the two end points and the two knots for the spline, in Starfish, the cubic spline only
specifies the points through which the spline passes. The code automatically determines the knot locations
by solving the following system,

Bi(0) = Bi−1(1) (29)

B′i(0) = B′i−1(1) (30)

B′′i (0) = B′′i−1(1) (31)

(32)
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where
B(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3, t ∈ [0, 1] (33)

is the cubic Bezier spline.24 The boundaries serve several important roles. They are used to define particle
sources and to specify surface impact interactions. The boundaries are also used to specify boundaries for
the potential solver. Starfish contains an internal meshing module for intersecting boundaries with the mesh
and classifying nodes as solid or fluid. Starfish uses a topologically structured mesh, since such a mesh
simplifies the particle push operation. In a structured mesh, an analytical expression exists between the
particle physical and logical locations, allowing the code to determine the particle cell location through a
mapping function. The downside of structured approaches is that cell boundaries may not line up with the
physical domain. As such, Starfish uses cut cells to determine surface boundary. Each NCV includes the
surrounding cell in each mesh direction. Next, the code determines which spline segments reside in each
NCV. These segments are subsequently used to classify the node location as internal (solid) or external
(fluid) to the node. The location is based on the direction of node ordering. The initial node classification
for the CHT geometry is shown below in Figures 12 and 13. Once the initial nodes are classified, Starfish
performs a flood-fill operation to classify the remaining nodes.

(a) Interface node classification (b) Flood fill

Figure 7. Illustration of the Starfish node classification approach

D. Materials

The listing below shows the material file which is used to define simulation materials. Materials define the
properties of all components and chemical species present in the simulation. As this example shows, multiple
material types are available.

1 <material>

2 <material name="Xe+" type="kinetic">

3 <molwt>131.3</molwt>

4 <charge>1</charge>

5 <spwt>5e9</spwt>

6 <init>nd=1e18,nd_back=1e4</init>

7 </material>

8

9 <material name="SS" type="solid">

10 <molwt>52.3</molwt>

11 <density>8000</density>

12 </material>

Materials are an example of the benefit of object oriented design. Each concrete material implementation
implements an updateFields function. The objective of this function is to compute the density, temperature,
and velocity of the material at the current time step. The actual implementation of this function is material-
type specific. Among the implemented material types are solid, kinetic,and fluid materials. Solid materials
are used to define the domain occupied by the the physical object and thus their density does no chage.
The other types form flying materials, gas-like materials that can change their density. The kinetic material
defines its population by simulation macroparticles, with updateFields() performing the standard particle-
in-cell (PIC) push. A fluid material on the other hand updates density by integrating fluid equations
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through the simulation time step. Currently only a neutral Navier Stokes algorithm is implemented; a
magnetohydrodynamic solver for ionized gases will be added in the near future.

E. Sources

The code listing below shows the XML file used to specify sources. Sources are basically initial conditions
in the velocity space. Starfish contains four types of particle sources: surface boundary sources, surface
material source, volume sources, and surface particle list sources. Currently only the first two kinds, the
surface boundary and surface material source, can be specified by the user. The other two sources are
used internally in the code to perform surface interactions or to create particles due to chemical reactions.
Sources can sample either particles or fluid (by modifying the boundary values). A surface source is attached
to a particular named boundary. The source is given a certain velocity emission model, such as uniform or
drifting Maxwellian. The emission material is also specified. The sources inject particles along the normal
direction of each segment making up the associated spline. Particles are loaded at a random location along
the spline. The actual source parameters, such as temperature, or drift speed, are emission model specific.
A material source is similar to a boundary source with the exception that it attaches itself to all boundaries
composed of the specified source material. Such a source can be used to model outgassing. Currently only
a time-independent mass flow rates are available, however, support for time-dependent sourceswill be added
in the future.

1 <sources>

2 <boundary_source name="neutral_source" type="maxwellian">

3 <material>xe</material>

4 <boundary>inlet</boundary>

5 <mdot>4e-6</mdot>

6 <v_drift>300</v_drift>

7 <temp>1000</temp>

8 </boundary_source>

9 </sources>

F. Material Interactions

The final file lists material interactions. The input file is shown below. Four types of material interactions
are available in Starfish: chemical reaction, MCC collision, DSMC collision, and surface impact. The first
is an interaction between two density fields. This model is applicable to both fluid and kinetic materials,
since the kinetic particles are merely used to update the density map of the material. As shown below,
chemical reactions are specified by listing the source and product materials along with optional coefficients.
The ”model” corresponds to the rate equations. For the ionization reaction, Xe + e− → Xe+ + 2e−, Fife
provides the rate equation

ṅi = χ(Te)nena (34)

where χ(Te) is obtained by integrating a differential cross-section.
The MCC collision is an interaction between a particle and a density field. The source material for this

interaction type must be kinetic, while the target may be fluid or kinetic. MCC is typically used to model
collisions with a significantly denser target cloud which can be assumed to be only negligible affected by
the collisions. An example of this interaction in the HET is the charge exchange (CEX) reaction between
ions and neutrals. The MCC model is not suitable for interacting two like populations, since it does not
modify the target particle. DSMC collision is an interaction between two kinetic materials, and is suitable
for modeling ion-ion collisions. Finally, surface impact is an interaction between a flying and a solid material.
This interaction type specifies the post-impact material, as well as sticking, restitution, and accommodation
coefficients. A sputter model can also be specified and can be coupled with a real-time surface deformation.

1 <material_interactions>

2 <chemical_reaction model="ionization">

3 <sources>Xe,e-</sources>

4 <products>Xe+,2*e-</products>

5 </chemical_reaction>

6

7 <mcc_collision process="scatter">

8 <source>Xe+</source>

9 <target>Xe</target>
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10 <sigma>const</sigma>

11 <sigma_coeffs>3e-19</sigma_coeffs>

12 </mcc_collision>

13

14 <surface_impact source="Xe+" target="BN">

15 <emission>diffuse</emission>

16 <product>Xe</product>

17 <c_stick>0.5</c_stick>

18 <c_rest>1</c_rest>

19 <c_accom>0.5</c_accom>

20 <sputter type="const" yield="0.1" product="BN" />

21 </surface_impact>

22 </material_interactions>

G. Thermalized Potential Solver

Starfish contains several field solvers, including a Poisson solver and the thermalized potential solver. The
latter directly mirrors the implementation of Fife 25. First, in the direction along the magnetic line, the
temperature is assumed to remain constant. Since plasma is assumed isothermal, any magnetic mirror drops
out,26 and the force balance may be written,

∇‖Pe = ∇‖(nekTe) = ene∇‖φ (35)

which is integrated

φ− kTe
e

ln(ne) = φ0 −
kTe
e

ln(n0) (36)

In HPHall, the following expression is used instead, alleviating the need to define a reference density

φ− kTe
e

ln(ne) = φ∗(λ) (37)

The φ∗ term is the thermalized potential. Knowing φ∗ and kTe along each field line allows us to determine
the spatial variation in potential, φ from ion density ni. Quasineutrality is assumed, Zni ≈ ne ≈ n, which
is a valid assumption in the bulk region removed from the near-wall sheath. This approach reduces the
dimensionality of the electron solve from the 2D r − z domain to a 1D λ domain, where λ is the magnetic
field line.

The other term that is necessary in order to determine potential is the electron temperature. In fact,
the electron fluid model implemented in HPHall can be primarily thought of as a temperature solver. The
electron temperature is given by the energy equation,

∂

∂t

(
3

2
nekTe

)
+∇ ·

(
5

2
nekTe~ue + ~qe

)
− ~ue · (nekTe) = Se − Si (38)

where Se and Si are energy losses due elastic and inelastic collisions with neutrals and ions, and the heat
term ~qe also includes energy losses to the wall. These properties are area averaged over the magnetic field
line.

The initial electron cross-field velocity is obtained from the force balance presented in Equation 35

je,n̂ = −eneue,n̂ = σe,⊥

(
En̂ +

1

ene

∂pe
∂n̂

)
(39)

or

ue,n̂ = −µe,⊥
(
En̂ +

1

ene

∂pe
∂n̂

)
(40)

This expression is further simplified using p = nekTe and ~E = −∇φ to obtain

ue,n̂ = µe,⊥

(
∂φ

∂n̂
− kTe
ene

∂ne
∂n̂
− k

e

∂Te
∂n̂

)
(41)

Fife further simplified this expression by differentiating 37 to obtain an expression in terms of the ther-
malized potential

ue,n̂ = µe,⊥

(
∂φ∗

∂n̂
+
k

e
(ln(ne)− 1)

∂Te
∂n̂

)
(42)
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Figure 8. Illustration of the electron lambda mesh overlaid over the ion mesh

Here µe,⊥ is the mobility term which in HPHall is evaluated following a model analogous to Equation 2.
At present, Starfish does not contain a magnetic solver. Instead the code reads the results Tecplot file

from HPHall which contains the magnetic field and λ values stored on the HPHall quadrilateral mesh. While
Starfish supports a similar quadrilateral mesh, in the work presented here we utilized a Cartesian mesh for
the ions. The loaded magnetic field is first interpolated onto this mesh. The code next constructs the
lambda mesh by countouring the λ field. Contouring begins along the spline listed by the ¡start¿ element
and continues until the ¡end¿ spline. The marching squares algorithm is used to perform the contouring.
The contour is subsequently desampled to the user specified number of radial partitions. Unlike HPHall,
the Starfish lambda domain is a topologically structured grid with a fixed number of radial partitions.
Figure 8 shows an example of the constructed lambda mesh. The values from the lambda mesh are also
interpolated onto the ion mesh. Constant potential is applied upstream of the anode boundary. The linear
decay downstream of the anode is not included in this plot.

H. Integration with Lynx

Since both Starfish and Lynx are developed in the Java programming language, the two codes can be
integrated easily by include the Lynx .jar file in the Starfish project. Lynx can be launched as a standalone
program or as a module. In the second case, the input files are passed to the launcher as function arguments
instead of being loaded from the file.

IV. The Wall-Plasma Interface

The next aspect of the multiscale approach deals with the near wall region, especially as applicable to
novel thruster geometries. In the classical Hall thruster, the magnetic field consists primarily of the radial
component. Such a configuration appears ideal at first since it produces an electric field directed along the
thruster axis. However, the presence of walls modifies the near-wall potential structure and results in a
local component accelerating ions into the walls. Ion wall flux contributes to a loss of thruster efficiency
and to a limited thruster lifetime due to channel erosion. In order to mitigate these losses, some novel
Hall thrusters9,27 have begun experimenting with magnetic fields with convex geometry. Near the walls,
this so-called magnetic lens induces an electric field with a radial component directed towards the channel
centerline.28 An interesting aspect of the lens configuration is that in the vicinity of the wall, the resulting
magnetic field lines can approach the wall with a highly inclined incidence angle θ, as measured from the
wall normal. Such a configuration leads to an electric field with a strong radial term that, in the case of
a sufficiently large θ, dominates the component due to the sheath potential drop.29 This can be seen from
a simple example. Consider a typical 300V Hall thruster with a 200V potential drop occurring across a 1
cm wide acceleration zone. The magnitude of the electric field E⊥ is then 2× 104 V/m. Next consider the
potential drop due to the wall sheath. The electric field along the magnetic field line in the vicinity of the
wall can be estimated from E‖ = Te∂ lnn/∂r ∼ Te/∆r ∼ 20 eV / 0.1cm ∼ 2 × 105 V/m.30 Here ∆r is the
sheath thickness, which is taken to be 10 Debye lengths. The angle at which the radial component of the
electric field becomes negative is given by Er = E‖ cos θ − E⊥ sin θ ∼ tan θ = E‖/E⊥ or θ ∼ 85◦.

Ions are then accelerated away from the wall and a complete sheath collapse is expected. The thermalized
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potential model does not contain sufficient resolution to resolve the near-wall non-neutral region. We have
thus developed a code specializing in modeling ion motion in the sheath region. This code allows us to
investigate the sheath formation and collapse in the presence of a two dimensional magnetic field. This
analysis is performed using a simple axisymmetric electrostatic particle-in-cell (ES-PIC) code.

A. Numerical Model

The code is based on the hybrid approach in which ions are treated as particles, but electrons are represented
by a fluid model. The computational domain is limited to a small region near the outer wall, as illustrated in
Figure 9. The small size of the computational domain allows the code to resolve the Debye length and thus
directly compute the electric potential in a reasonable amount of time (each simulation takes approximately
30 minutes). The domain captures the acceleration region characterized by the presence of strong applied
magnetic field. In this formulation, the anode and the primary ionization zone are located to the left. The
upper boundary represents the wall, while the bottom boundary extends into the quasineutral bulk plasma
region. Ions are injected into the simulation along the left boundary and leave through the open right
and bottom face or by recombining with the upper wall. The inset in Figure 9 is an example of a hybrid
annular/cylindrical Hall thruster such as the CHT in which the magnetic field geometries of interest can be
found. The highlighted box illustrates the location of the simulation domain. It should be noted that the
size of the region of interest is artificially increased in this drawing for clarity.

Figure 9. Schematic of the computational domain. Ion particles are injected from the left. The inset shows a
cylindrical Hall thruster and highlights the region analyzed by our code.

To simplify the subsequent computation, a simulation mesh is selected such that radial gridlines are
aligned with the magnetic field. Such a formulation allows us to specify the necessary reference values as a
function of the axial grid coordinate only. At this time, the computational mesh is described analytically
instead of utilizing the mesh from the thruster simulaton. The mesh coordinates are given by

r = r0 + j ∗∆r (43)

z = i ∗∆zj − (nr − 1− j) ∗∆r ∗ tan(θ)− 0.5 ∗ (nz − 1) ∗ (∆nzj −∆zw) (44)

where ∆zj is the local cell spacing. The cell spacing varies linearly between the top and bottom boundary.
These mesh coordinates can be easily inverted. The j component is obtained first from the radial r coordinate.
The i coordinate is then recovered from the axial position z using the second equation.

Xenon ions are injected into the simulation domain along the left boundary with initial velocity uz =
u0 + uth. Here u0 is the drift component and uth is a random thermal velocity obtained by sampling
the Maxwellian distribution function at 1 eV. The magnitude of the drift component was set to 6 km/s,
corresponding to approximately 25 eV of upstream acceleration. Initial radial velocity is also obtained by
sampling the random thermal component. The number of computational particles injected per time step is
obtained from p = ṁ∆t/w = niūAm∆t/w where ni = 5×1016 m−3 is the injection ion density, and w is the
macroparticle weight. The weight was selected such that cells in the bulk region contained approximately
200 computational particles at steady state. Particles were loaded with a zero azimuthal component. We
assume that no forces act in the azimuthal direction and hence the cylindrical equations of motion reduce
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to the Cartesian form. Ion positions are updated at each time step according to the Leapfrog algorithm by
integrating the Lorentz force, ~F = −e∇φ. The magnetic term is omitted, since in a Hall thruster, ions are
not magnetized. Ions impacting the upper wall or leaving the computational domain were removed from the
simulation. Collisions were not included as they generally play only a minor role in the sheath.

B. Potential Solver

Potential was computed by solving the Poisson’s equation, ε0∇2φ = −e(ni−ne−ns), with the three densities
on the right side corresponding to ions, primary electrons, and secondary electrons, respectively. The ion
density ni was obtained by scattering positions of kinetic ions to the computational grid. The electron density
is computed from the Boltzmann equation following the approach in26 and.31 In the frame of reference of
ions, electrons respond instantaneously to a disturbance. The time-dependent and convective terms then
vanish from the momentum equation. Also, since in Hall thrusters the sheaths is generally collisionless, we
can disregard the collision operator. We thus arrive at the force balance,

∂

∂x
(nekTe‖) +

ne(kTe,⊥ − kTe‖)
B

∂B

∂s
+ neeE‖ = 0 (45)

These terms correspond to the gas pressure, magnetic mirror, and electric field effects, respectively.
Utilizing E‖ = −∂φ/∂s, the above equation can be integrated to obtain an expression for bulk electron
density,

ne = n0 exp

[
e

kTe‖
(φ− φ0)−

kTe⊥ − kTe‖
kTe‖

ln

(
B

B0

)]
(46)

This is the well known Boltzmann relationship modified by the magnetic field strength term. This term
is seen to reduce the electron density in regions of an increasing magnetic field this is the magnetic mirror
effect. The standard Boltzmann relationship is recovered if the magnetic field magnitude remains constant
along the field lines. The magnetic mirror term also drops out if plasma is isothermal. However, as outlined
in,7 Hall thruster plasma is not isothermal. Following the results from the kinetic analysis in,7 kT‖ = 10 eV
and kT⊥ = 2kTe‖ = 20 eV is used. For this particular set of input parameters, Equation 46 simplifies to
ne = n0(B0/B) exp[e(φ− φ0)/kTe‖].

It should be noted that Equation 46 holds independently for each magnetic field line. The three constants
with the 0 subscript are the reference density, potential, and magnetic field strength. These values are unique
and independent along each line. We also assume that electron temperature remains constant in the parallel
direction, ∂Te/∂s = 0, and that there is no variation in magnetic field strength in the axial direction,
∂B/∂z = 0. The reference density is obtained self-consistently from the computed ion density along the
bottom edge of the simulation domain where ni = ne = n0. A linear decay in potential is applied for
majority of cases, with φ0 = φL−E⊥(zw−zw,0), where E⊥ = 20 kV/m. Since in Hall thrusters the potential
profile adjusts self-consistently based on the local discharge parameters, an alternate cusp configuration is
also investigated in which the potential profile exhibits a deep valley. The strength of the magnetic field is
computed from the conservation of magnetic flux, φm =

∫
S
~B · ~ds or Br∆z = C, a constant value. Here ∆z

is the cell spacing at the corresponding r value. As indicated by Equation 46, terms relating to the magnetic
strength appear only as a ratio allowing us to select an arbitrary value for the reference field.

The secondary electron density ns is obtained from ∇ · (n~u) = 0. Density of secondary electrons at the
wall is given by ns,w = sne,w where s(Te, θ) is the SEE yield.30 The electrons are assumed to be emitted
with an isotropic angular distribution and energy dependence based on the linear relationship given by
Dunaevsky,32

s(Te, θ) ≈ σ0 + (1− σ0)
Ep
E1

(47)

For Boron Nitride, the typical wall material in conventional Hall thrusters, the coefficients σ0 and E1 are
0.54 and 40, respectively. Ep is the energy of the incoming particle, measured in eV. Initial velocity of the
secondary electrons is taken to be us,w = (2kTw/πme)

1/2. Energy conservation dictates u = (2q∆φ/m)1/2,
leading to

ns = sne,w

(
kTw
eπ

1

φ− φw

)
(48)

21 of 30

American Institute of Aeronautics and Astronautics



Potential along the top wall is fixed as φw = φ0 −∆φw, where the wall potential drop is given by30 as

∆φw = Te ln

1− s(Te, θ)

v0

(
2πm
Te

)
 (49)

where v0 is the ion velocity at the sheath edge, which in this formulation is set to the Bohm speed. The
problem is closed by prescribing the normal electric field E⊥ along the left and right boundaries, and
zero tangential electric field E⊥ = 0 on the bottom boundary. The electric field along the left and right
boundaries is non-uniform for cases with a diverging magnetic field line topology. This can be seen from
a simple observation of the increasing distance between field lines as one moves away from the wall. The
magnitude is obtained numerically by computing the normal distance d to the next magnetic field line (grid
line) at each node. The electric field is then set from E⊥ = −∆φ0/d. Potential is solved using the finite
volume method.

In addition to the Poisson solver, an alternate method for obtaining potential was also implemented. This
approach was developed in order to approximate the solution from Hall thruster codes such as HPHall. As
described previously, HPHall does not solve the Poisson’s equation, and instead computes radial potential
by assuming quasineutrality, ne = ni (with ion density obtained from kinetic ions) in conjunction with the
thermalized potential model, φ = φ∗ + kTe/e ln(n/n0). This approach is analogous to the formulation used
to derive the relationship for bulk electron density, Equation 46. This expression can be inverted to obtain

φ = φ0 +
kTe‖

e
ln

(
n

n0

)
+
kTe⊥ − kTe‖

e
ln

(
B

B0

)
(50)

where ne = ni = n. Our expression extends the quasineutral formulation by taking into account the magnetic
mirror term.

C. Near Wall Sheath Formation

The plasma-wall transition region in the Hall thruster channel determines the particle and energy fluxes
from the plasma to the wall. In order to develop a self-consistent model, the boundary parameters at the
sheath edge (ion velocity and electric field) have to be obtained from a multi-dimensional (in our case, two-
dimensional) plasma bulk particle model. Under typical Hall thruster conditions, i.e. ion temperature much
smaller than that of electrons and significant ion acceleration in the axial direction, the pre-sheath scale length
becomes comparable to the channel width so that the plasma channel becomes an effective pre-sheath. We
have shown previously that the plasma-sheath patching approach can be used. In this approach, the electric
field that develops in the pre-sheath can serve as a boundary condition for the sheath in addition to the
ion velocity. Relationship between the ion velocity and electric field at the plasma-sheath interface is shown
in Figure 10. Having particle density, ion velocity distribution and electric field calculated from the bulk
plasma particle model, the potential drop across the sheath can be calculated for given dielectric material
properties (specifically, the secondary electron emission coefficient). Including the sheath acceleration of the
ions will increase the ability to predict wall erosion rates.

The dielectric wall effect is taken into account by introducing an effective coefficient of secondary electron
emission (SEE). The SEE coefficient is assumed to be a linear function of the electron temperature. In a Hall
thruster, there are fluxes of primary electrons to the wall, SEE electrons, and SEE electron fluxes from the
opposite wall. Due to partial electron thermalization, effective SEE flux from the opposite wall decreases.
This is consistent with earlier predictions. In the steady state total current to the wall must be zero. From
the current balance at the dielectric wall one can find that:

Γi = Γe (1− s+ [1− α] s) (51)

where Γi is the ion flux to the wall, Γe is the electron flux to the wall, s is SEE coefficient, α is the electron
thermalization coefficient that reduces effective SEE (from the opposite wall). Thermalization coefficient is
defined as a ratio of the flux of thermalized electrons to the flux of SEE electrons emitted by the wall. For
the purpose of this analysis the electron thermalization coefficient is taken as a parameter.

Γi = Γe (1− s+ βs) (52)
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Figure 10. Relationship between boundary conditions at the plasma-sheath interface. Electric field is normal-
ized by Te/LD (LD is the Debye length) and velocity is normalized by the Bohm speed.

where β is the fraction non-thermalized particles. In the case ion flow is calculated based on the Bohm
velocity there is a simple analytical expression for the potential drop. The potential drop across the sheath
is therefore:

∆φ = −Te ln

(
mi

me
[1− s+ βs]

)
(53)

If ion flux is calculated from the PIC simulation the following expression can be used:

∆φ = −Te ln

(
ne,0

√
Te/(2πme)

Iion
[1− s+ βs]

)
(54)

s is the SEE total coefficient; β is the fraction non-thermalized particles, which is calculated from the
kinetic simulation. The fraction of the electrons that can reach the opposite wall.

Based on the steady state sheath condition we can calculate the potential drop across the sheath. These
results are shown in Figure 11, where electron thermalization coefficient was used as a parameter. One can
see that the higher thermalization coefficient leads to reduction of the sheath potential drop and as such
leads to increase of the electron losses to the wall. On the other hand low thermalization coefficient helps to
restore the strong sheath as in the case without SEE.

Figure 11. Dependence of the sheath potential drop on the
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Additional effect of electron thermalization is on the global discharge characteristics such as bulk electron
temperature. To illustrate this effect a 2D plasma flow domain is considered that has lateral boundaries
near the dielectric wall. Plasma quasi-neutrality is assumed and therefore the plasma presheath-sheath
interface is considered to be the lateral boundary for the plasma flow region. For this demonstration we
have employed previously developed hydrodynamic model described in detail elsewhere. The electron energy
equation and electron transport are considered in a one-dimensional framework along the centerline. The
electron temperature is calculated along the centerline as a balance between Joule heating, ionization and
wall losses.

Partial electron thermalization is taken into account parametrically and it was found that it has very
strong effect on global discharge characteristic. As an example it is shown in Figure 12 show this effect
changes peak electron temperature. It can be seen that higher electron thermalization leads to electron
temparture saturation at higher discharge voltage while low electron thermalization produces near linear
increase of the electron temperature with discharge voltage. This is very important effect, in particular,
when high power and high voltage Hall thrusters are considered.

Figure 12. Effect of the partial SEE electron thermalization on electron temperature. α = 1 corresponds to
complete thermalization.

V. Summary of Results

This section presents a summary of important results obtained with components of our multiscale model.
We first present results from a Lynx simulation used to investigate electron transport. The important finding
from this analysis was that the general linear relationship µwalls+collisions = µwalls+µcollisions does not hold
due to synergistic effects. We next shift focus to the 2D sheath code and use it to study the ion dynamics in
the presence of an inclined magnetic field. Finally, we present preliminary results from a Starfish simulation
of the Princeton Cylindrical Hall Thruster.

A. Synergistic Wall Effects

A common assumption in Hall thruster codes is that

µ = µclassical + µwalls + µBohm (55)

The classical term corresponds to the transport due to particle collisions. Ignoring the Bohm term, the
validity of the µ = µclassical+µwalls relationship can be tested by running three sets of simulations, one with
collisions and specular walls, one with wall effects but no collisions, and one with both. The field solver is
included to take into account any possible sheath effects. To investigate dependence on temperature, three
sets of electron temperatures were also considered, kTe = 1, 10, and 35 eV. A simplified academic approach
was used to represent collisions. Instead of utilizing a realistic combination of momentum transfer, Coulomb,
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and excitation and ionization collisions, only the momentum transfer interaction was included and a constant
cross-section σ = 1 × 10−18 m2 was used. Walls were either specular for the collisions-only case, or were
represented by the Sydorenko model. The plasma density in all cases was 1× 1016 m−3 and neutral density
was 1019 m−3. In all cases E⊥ = 20, 000 V/m and B = 0.01 T were used.

Results from these three runs are shown in Figure 13. The results are grouped by the particle energy.
The first column shows the current density variation with the distance along the field line, while the second
column shows the corresponding mobility. The second set of pictures also includes a qualitative plot of
electron density (in red) and electric potential (in blue). These two curves are included to illustrate the
extent of the bulk and the sheath regions. Since the sheath scales with the Debye length, which in turn
scales with electron temperature, the sheath thickness is seen to increase from top to bottom. Although
values of current density and mobility are included, these are merely illustrative since this particular setup
does not correspond to a real thruster. We can see that for kTe = 1 eV, electron transport is completely
dominated by collisions. There is very little difference between the results computed with collisions only,
and by including both collisions and wall effects. The wall-induced transport is negligible in this case.

The situation changes somewhat as the electron temperature is increased. At kTe = 10 eV, wall
interactions can be seen to play a role in mobility, with mobility demonstrating a clear near wall in-
crease. This increase in mobility does not correspond to a linear increase in current density, due to
the decrease in electron density in the sheath region. However, of more interest is the observation that
jwall+collisions > jwall + jcollisions. This additional ”anomalous” current can be seen in both the bulk region
and also in the near wall sheath, where it is especially prominent. This increase in total current is even
more pronounced when one considers the kTe = 35 eV case. This case exhibits a finite cross-field current
due to wall effects, jwalls, with increased magnitude near the walls. On the other hand, the current density
due to collisions only shows a flat profile in the bulk region, and rapid decay in the sheath. However, when
the two independent processes are combined, the resulting current profile shows a strong deviation from the
two bases. A significant increase in near-wall conductivity can be seen when both collisions and wall effects
are considered. The bulk population also demonstrates an increase in current. The representative values
for jcollisions, jwalls, and jboth are 71.5, 1.8 and 83 A/m2, respectively. Hence, in the bulk population, the
combination of the two processes results in a 14% increase in trans-field current density.

This finding indicates that simple analytical models taking into account each mobility term individually
may not account for the interaction between the processes. Such synergistic responses are however not
easily included in analytical models, suggesting the need for a kinetic treatment of electron transport. The
explanation for this effect is simple. In a steady discharge, a balance develops between the wall potential drop
and the parallel component of electron energy. The size of the potential well adjusts self-consistently to trap
electrons away from walls. In this classical mode, wall flux is not a significant contributor to conductivity due
to the low flux of primary electrons (a different situation arises in the case of a saturated sheath or a magnetic
mirror). Collisions scatter the particle velocity components. Even a small angle event, such as Coulomb
collision, may impart a sufficient ∆v‖ to allow the electron to reach the wall. This additional scattering is
demonstrated in an increased number of secondary electrons. As an example, the case with wall collisions
only resulted in a 0.05, 0.80, and 6.81 percent of total population occupied by secondary electrons, where
the three values correspond 1, 10, and 35 eV, respectively. Once collisions are included, these percentages
increase to 0.06, 1.32, and 10.23%. It should be noted that this additional wall flux is expected to become
more pronounced as kTe,⊥ > kTe,‖. This additional energy imparted into the parallel v‖ component thus
results in an increased number of electrons able to penetrate the sheath and interact with the wall.

B. Effect of Inclined Magnetic Field on Plasma-Wall Interface

We next discuss results obtained using the two-dimensional sheath code. We used the code to investigate
the effect of an inclined magnetic field and the magnetic lens on the motion of ions in the near-wall region.
This effort is described in more detail in 33. We ran a simulation for a number of magnetic field incidence
angles as well as several magnetic mirror configurations. The simulation started by pre-filling the domain by
injecting and propagating ion particles under the initial electric field. This fast pre-fill was found to improve
the subsequent solver convergence rate. The simulation then continued in the normal mode in which the
electric field was updated at each time step. The simulation continued until steady state characterized by
approximately zero net change in particle counts between successive iterations. The simulation then contin-
ued for additional 2000 time steps during which results were averaged. The typical number of computational
particles at steady state was 700,000. A marching squares algorithm was implemented to automatically con-
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(a) Current density, kTe = 1 eV (b) Mobility, kTe = 1 eV

(c) Current density, kTe = 10 eV (d) Mobility, kTe = 10 eV

(e) Current density, kTe = 35 eV (f) Mobility, kTe = 35 eV

Figure 13. Mobilities due to collisions and/or wall effects. Qualitative potentials and electron densities shown
for the combined (walls+collisions) case.
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(a) 10 eV (b) 35 eV

Figure 14. Comparison of velocity distribution functions for the three considered cases for initial electron
temperatures 10 and 35 eV.

tour the resulting velocity map to obtain the sheath boundary. In this work, we defined the sheath boundary
as the contour where the radial component of velocity v = vB , the Bohm velocity.

Figure 15 shows illustrative results obtained for the case of a magnetic mirror with a mirror ratio
Rm = Bw/B0 = 2 was used. Cases without and with a 40◦magnetic field inclination were compared. The in-
clined case shown in Figure 15(b) also included a potential ”valley” that is known to occur in devices utilizing
cusped magnetic profiles. In the CHT, such configurations arise from the difference in the physical location of
the inner and outer magnets and the details of the magnetic circuitry. The potential valley was modeled by su-
perimposing a parabolic potential drop over the linear decay, φ0 = φL−E⊥(zw−zw,0+∆φC

[
4(ẑ − 0.5)2 − 1

]
,

where ẑ = (zw − zw,0)/Lz is the normalized distance and ∆φC = E⊥Lz is the potential drop in the cusp
selected to equal the potential drop in the linear region. The potential profile at steady state is shown in the
inset in Figure 15(b). It can be seen that although an electric field forms directing ions into the potential
well, this profile has only a negligible effect on the fast moving bulk ions. The primary effect of the potential
well is to further increase the electric field accelerating the ions and ions are accelerated towards the channel
centerline. It should be noted that this particular example does not take into account the dynamic nature of
Hall thruster discharges. Fluctuations in the structure of the internal discharge could lead to the presence
of slowly moving ions in the vicinity of the well, and these ions would subsequently be accelerated into the
wall.

(a) (b)

Figure 15. Ion density contours in the presence of magnetic mirror. Magnetic mirror strength of 2 is used
in both cases. Case (b) includes a 40o magnetic field inclination and a potential well. The inset shows the
potential, with the contours ranging from 200V to 40V.

The ion velocity contours and velocity streamlines at the 85◦ incidence angle are plotted in Figure 16.
The contour plot corresponds to the radial velocity component normalized by the Bohm speed. At this
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high incidence angle, the value of the normalized velocity remains below unity, indicating that the Bohm
speed is never reached. In addition, ions are moving towards the wall only along a small region near the left
boundary. This result is likely a direct byproduct of our loading scheme since it affects only the ions injected
into the sheath. Ions originating in the bulk plasma are accelerated away from the wall. Ions located just a
small distance from the wall are seen to follow trajectory first parallel to the wall, and subsequently turning
away from it. Ions are thus seen to be repelled by the wall, indicating a sheath collapse.

Figure 16. Plots of normalized radial velocity and ion velocity streamlines at θ = 85◦.

These numerical results confirm that the presence of highly inclined magnetic fields results in a decreased
sheath thickness. This observation is next correlated to the wall flux. From mass conservation, Γw = ni,suB ,
where the terms on the right hand side correspond to the ion density at the sheath edge and the Bohm
velocity. The computed wall flux is shown in Figure 17(a). We can see that although the presence of SEE
tends to reduce the sheath thickness, it has only a negligible effect on ion wall flux. The flux remains
approximately constant for these cases along the wall length, with the slight decrease due to the reduction
in bulk ion density due to ion acceleration. The initial spike is an artifact of the loading scheme, as noted
previously. The inclined magnetic field is seen to reduce the wall flux considerably, which can be attributed
to the net acceleration of ions away from the wall and hence a reduced sheath ion density ni,suB . This
observation has a profound effect on both the ionization efficiency and the thruster lifetime, since ion losses
to the walls are a major contributor to both of these inefficiencies. Here we consider only the impact on wall
erosion. Material sputtering yield scales with both the impact angle and the energy of the incoming ions.
Several models exist for computing sputter yields for Boron Nitride, the material typically used in SPT-type
Hall thrusters. In this work we utilize the logarithmic fit suggested by Garnier,34

Y0(E) = 0.0156 lnE − 0.0638 (56)

(a) (b)

Figure 17. Comparison of wall flux and emitted sputtered yield for 5 selected configurations.

This fit is valid from the energy threshold of 60 eV up to the keV range. In our analysis we neglect low
energy sputtering. For angular dependence of yield, quadratic polynomial fit is recommended by Yim35

Y (E, θ) = Y0
[
−4.45× 10−7θ4 + 4.91× 10−5θ3 − 9.72× 10−4θ2 + 3.44× 10−3 + 1

]
(57)

where θ is in degrees and is measured from the wall normal.
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Figure 17(b) shows the calculated sputter yield. The profiles for the baseline and SEE configurations
are shown to exhibit an increase in sputter yield in the axial direction even though the flux decreases. This
response is due to the angular dependence. Similar response is seen in the remaining cases. Presence of a
40◦ magnetic field inclination results in flux reduction by approximately 60%, leading to a correspondingly
similar reduction in erosion rate. In addition, we see that the magnetic mirror has only a marginal effect on
wall flux and erosion rates in the inclined field configuration. This can be explained by realizing that both
the magnetic field incidence angle and the magnetic mirror generate analogous electric field profiles.

VI. Conclusion

This paper summarizes recent development on a multiscale approach for analyzing Hall thrusters. The
approach is based on the thermalized potential model utilized in codes such as HPHall. However, instead of
relying on analytical models for the cross-field electron mobility, the mobility is computed self-consistently
with a kinetic code Lynx. In addition, a two dimensional code is used to study the ion dynamics in the
sheath.

The central component of the multiscale approach is a two dimensional code for the thruster discharge
based on the thermalized potential model. In the past, our effort used HPHall as this component. A number
of issues prevented continued use of HPHall. As such, we have begun work on a replacement solver Starfish.
Starfish is being developed as a general 2D plasma solver with applications not limited to Hall thruster
analysis. In addition, we have developed a 2D code for analyzing the dynamics of ions in the sheath in the
presence of a magnetic mirror or an inclined magnetic field. The numerical analysis confirms the theoretical
prediction that at sufficiently large magnetic field line incidence angles, the ions are repelled from the wall.
We have also utilized our kinetic code to study the interaction of electron diffusion processes. Our simulations
indicate the presence of synergistic effects. This finding suggests that the common approach of describing
mobility by a linear combination of independent terms fails to capture the component of transport due to
the interaction between the various processes.
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