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Two analytical models for computing the pumping speed of a vacuum chamber were derived. The models
focus on the vacuum systems used for testing electric propulsion devices. The Node model is based on a
well-known calculation of the effective pumping speed adjusted by the conductance between the pump and the
measurement location. The Flux model is derived by balancing particle fluxes at two temperatures – one at the
ambient condition, such as the chamber walls, and second at a cold temperature indicative of the cryo-pumps.
The model also takes into account gas-wall interaction. The Flux model produces the flux transfer matrices that
reduce the pumping speed calculation to a linear algebraic problem. Both models produced a good agreement
with the experimentally measured pumping speed for two chambers investigated in this paper. The Flux model
prediction of the pumping speed for a new chamber that is currently under design was twice as high as the
pumping speed predicted by the Node model and within 30% of a PIC simulation that used the CTSP code.

I. INTRODUCTION

Inability to achieve adequately low pressure in the available
vacuum chambers presents a significant challenge to testing
the new generation of high power Electric Propulsion (EP)
devices.1 Recent findings showing that a long-held guidance
of 10−5 Torr as the minimum pressure necessary to test a
Hall thruster is inadequate to expose important performance,
stability, plume divergence, and EMI issues that may not be
present during the ground tests but exhibit themselves in the
low vacuum of space.2–5 These findings highlight the need to
develop more capable ground test facilities, which can achieve
pressure levels significantly below the 10−5 Torr recommen-
dation.

Designing an EP testing facility is an iterative, slow, and
costly process. Multiple pumping surfaces are usually em-
ployed in the modern vacuum facilities. Extensive numer-
ical simulations are required to optimize locations of these
pumps in order to achieve the lowest possible chamber pres-
sure. These simulations can often be time-consuming and ex-
pensive. While not completely obviating the need for these
simulations, we propose in this paper two straightforward an-
alytical models for calculating the effective pumping speed of
a chamber. The models allow quick and simple initial design
iterations before the final validation with a sophisticated nu-
merical simulation. Such simple tools may help in reducing
initial design iteration times, enabling faster convergence to
the best solution, greater design flexibility, and therefore re-
ducing the overall project cost. While the emphasis is placed
on the cryogenically pumped systems with a thruster operat-
ing on xenon gas, both models can be applied to any type of
pumps and any type of gas.

Most modern vacuum chambers used for EP testing utilize
cryogenic pumps operated at temperatures around 20 K in or-
der to achieve significant pumping speed. Temperatures up to
approximately 50 K can be used for pumping xenon, but the
pumping speed and the ultimate pressure scale inversely with
the cryogenic surface temperature. On the other hand, operat-
ing at a temperature above 20 K typically allows greater heat

rejection capacity. Thus a tradeoff between the cryopumping
surface temperature and the heat rejection capacity needs to
be carefully considered in the design of such a system. A fig-
ure of merit often used for cryogenic pumps operating at 20 K
is 55,000 L/s/m2. That number assumes that all gas particles
arriving at the cryogenic surface are adsorbed, thus the cap-
ture probability g = 1. However, the cold pumping surfaces
are usually thermally protected by a liquid nitrogen shroud
with either louvered or chevron entrances, reducing the cap-
ture probability to 0.4 or 0.25 respectively for the two geome-
tries. A reliable model needs to be able to predict the pumping
speed based on these considerations.

The effective pumping speed relevant to testing an EP de-
vice is determined by the ratio of the flow rate from the
thruster over the measured background pressure. Until re-
cently not enough emphasis was placed on the pressure mea-
surement methodology. High effective pumping speeds were
often quoted for chambers by using pressure readings from
the gauges located close to the pumping surfaces. As was dis-
covered, these values were misleading because pressure at the
thruster is often significantly higher than at the pump. More
importantly the flux of particles in the chamber may not be
isotropic. Studies found that the flux of particles directed at
the thruster exit plane measured close to the thruster loca-
tion is the most relevant parameter in determining a facility
performance.2–4 The methodology of determining an effective
pumping speed based on the pressure measured using an ion
gauge located close to the thruster and oriented with the en-
trance aperture in the thrust direction is gaining a wide accep-
tance in the EP community.6,7 The second analytical model
presented in this paper allows calculating the effective pump-
ing speed based on the gauge orientation.

The rest of this paper is organized as follows. In Sec. II we
describe the Node model for calculating the effective pump-
ing speed. The Node model represents a simple application of
the well-known conductance calculation for multiple pumps.
In Sec. III we derive a more involved but still straightforward
analytical model that is based on the particle flux balance. We
compare the pumping speed estimates from both models with
the measured values for two EP testing chambers in Sec. IV.



2

In that section we also apply both models to predict the perfor-
mance of a new chamber that is currently under construction
and compare the model results with a particle in cell simula-
tion predictions. Section V summarizes salient points for both
models.

II. THE NODE MODEL

The first model presented in this paper treats locations of
the pumping surfaces as nodes. It computes the effective
pumping speed at the thruster location P eff

i due to the node
i as the rated pumping speed of the node Pi adjusted for the
conductance Ci between the thruster and the node locations:8

1

P eff
i

=
1

Pi
+

1

Ci
(1)

where subscript i denotes the node index. Conductance ac-
counts for gas interaction with the chamber surfaces and is
thus a function of geometry and the gas flow. The rule for
adding conductances in a complex geometry is similar to the
rule of adding capacitances for an electrical circuit, while the
total effective pumping speed is a linear summation of the ef-
fective pumping speed contributions from each pump8:

1

Ctot
=

∑
i

1

Ci
, for conductances in series (2a)

Ctot =
∑
i

Ci, for conductances in parallel (2b)

P eff =
∑
i

P eff
i . (2c)

Majority of conductance calculations relevant to the vac-
uum chamber geometries involve cylinders, concentric cylin-
ders, and cones. Following Santeler’s approach9 we calculate
conductance (in L/s) as a product of the orifice conductance
Co and the transmission probability s:

C = sCo, (3a)

Co = 11.43

√
T

M
r2, (3b)

s =
1

1 + 3l′/8r
, (3c)

l′ = l +
l

3 + 3l/7r
, (3d)

where T is the gas temperature in Kelvin, M is the molecular
weight of the gas, l and r are the cylinder length and radius
in cm. The expressions above are valid for cylindrical tubes
of circular cross-sections. These equations can be adopted for
tapered and annular tubes and square cross-sections by replac-
ing radius r in the equations above with the following expres-

sions:

r → 1

2

[
16r21r

2
2

r1 + r2

]1/3
for tapered tube, (4a)

r → 1

2

[
2(r2o − r2i )

ro + ri

]1/3
for annular cross-section, (4b)

r → 1

2

[
8

π

a2b2

a+ b

]1/3
for square cross-section, (4c)

where ro and ri are the outer and inner radii of the annular
tube and a and b are the height and width of the square cross-
section.

Presence of a large cryogenic surface in a vacuum chamber
may reduce the effective gas temperature below the ambient
value affecting conductance. We calculate the effective gas
temperature as

T =
(1− p)Tamb + p(1− g)Tcryo

1− pg
. (5)

where Tamb is the ambient temperature (e.g. 300 K), Tcryo

is the cryo surface temperature, and p is the probability of
gas impacting on the the cryo surface and g is the capture
probability.

For commercial pumps one may use the rated pumping
speed for Pi in order to compute the effective pumping speed.
For the custom made cryo arrays the rated pumping speed can
be computed with Eq. (24).

We first illustrate the Node model with two simple exam-
ples, shown in Fig. 1. The top schematic shows a thruster in-
stalled at the left-end of a vacuum chamber that contains two
pumps. The effective pumping speed of the system measured
at the thruster location is computed as a sum of the effective
pumping speeds due to each pump P eff = P eff

1 + P eff
2 ,

where

1

P eff
1

=
1

P1
+

1

C1
,

1

P eff
2

=
1

P2
+

1

C1
+

1

C2
.

Conductances C1 and C2 are computed using Eq. (3) with the
appropriate cross-section (if necessary using Eq. (4)) and gas
temperature computed using Eq. (5).

The flexibility of the Node model is illustrated with the ex-
ample shown in Fig. 1(b). Here the thruster has been moved
to an appendix chamber that may have a different diameter
or different cross-section than the main chamber and does not
have a pump attached to it. As in the earlier example, the ef-
fective pumping speed measured at the thruster location is the
sum of the effective pumping speed due to each pump in the
main vacuum chamber. In this case, however, these values are

1

P eff
1

=
1

P1
+

1

C1
+

1

C3
,

1

P eff
2

=
1

P2
+

1

C2
+

1

C3
.
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FIG. 1: Simple examples of chamber geometry used to illustrate the
Node model. A thruster is located in the main vacuum chamber in
pane (a), while in pane (b) the thruster is located in a cylindrical
appendix attached to the main chamber.

The primary advantage of the Node model is that the pumping
speed of a complex geometry may be calculated using basic
spreadsheet software. The model also easily accommodates
parametric optimization, with the pump or the thruster loca-
tion left as a variable. For custom made cryo surfaces one can
additionally optimize the temperature of the pumping surface,
allowing integration of heat load requirements levied on the
cryo refrigeration system. We will validate the Node model
against two existing EP testing facilities at The Aerospace
Corporation in Sec. IV.

III. THE FLUX MODEL

The second model is based on the gas flux balance inside
a vacuum chamber. While the model can be calculated ana-
lytically, a software package capable of solving a system of
linear equations would greatly speed up the process. The gen-
eral approach for the model is similar to the one outlined by
Cai et al.10 and Frieman et al.11. Unlike the previous work
however, we include some effects of the gas-wall interaction
as well as a two-temperature gas flow. The biggest improve-
ment over the earlier work lies in systematizing the approach
using vector algebra and deriving flux transfer matrices for
various chamber geometries. Complex geometries may thus
be simulated by combining matrices and solving the resulting
system of linear equations to compute gas flux and pressure at
an arbitrary location. The matrix approach to determining the
pumping speed of a cryopumping system has been previously
proposed12. That earlier work derived the transfer matrices
based on the cryo surface locations. In that case the flux be-

tween the cryo surfaces was determined by the view factors
and other geometric considerations, which made the model
difficult to set up, implement, and analyze. The advantage of
the current approach (and its limitation) is that the geometry
is restricted to tubes and cones.

We begin developing the Flux model by noting that most
of the EP testing vacuum chambers consist of cylindrical sec-
tions and end domes. An end dome section of a vacuum cham-
ber may contain pumps and gas sources. Specifically, the flux
of particles ejected from a thruster may bounce against an end
dome section and thermalize. This thermal flux can be treated
as a gas source at the end dome11. Some of the incoming
gas particles may strike the end dome wall of the chamber
and assume the ambient temperature of the wall (we make an
assumption of the perfect accommodation coefficient), other
particles may strike a cryo pump and may not be absorbed,
thus assuming the cold temperature of the cryo surface. We
include both types of particle fluxes in our analysis: warm, at
the chamber wall temperature, and cold, at the cold tempera-
ture of a cryo pumping surface or its shroud in cases where a
relatively warm (usually LN2) shroud surrounds a colder (usu-
ally around 20 K) pumping surface. Any two thermal fluxes
that are conserved can be related through the following iden-
tity

n1v1 = n2v2 ⇒ n1

√
T1 = n2

√
T2 ⇒ n1 = n2

√
T2

T1
(6)

In the following derivation of the Flux model we will de-
fine a particle density “vector” at a chamber cross-section as
nx = [n+

wx, n
+
cx, n

−
wx, n

−
cx], where subscript x refers to the

cross-section index and w and c refer to the warm and cold
particles. The plus and minus superscripts refer to the flux di-
rection, with the positive direction defined toward the right in
the following drawings. Another useful identity in the deriva-
tion is the “thermal” matrix T defined as

T =


1

√
Tc

Tw
1

√
Tc

Tw√
Tw

Tc
1

√
Tw

Tc
1

1
√

Tc

Tw
1

√
Tc

Tw√
Tw

Tc
1

√
Tw

Tc
1

 . (7)

A. End Dome

An end dome section can be analyzed by examining two
cross-sections of the end dome that are spaced infinitely close
to each other, thus allowing us to ignore the section conduc-
tance effects. Figure 2 shows a right-handed end dome con-
figuration with warm and cold particles (subscripts w and c
respectively) crossing cross-section 1 inside a vacuum cham-
ber. Cross-section 2 was chosen to coincide with the end dome
wall, thus the flux of particles moving toward the right is zero.
Furthermore, a portion of the area of the end dome may be
covered by a cryo pumping surface.

The probability diagram at the bottom of Fig. 2 indicates the
possible scenarios for the incoming flux. A particle moving
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FIG. 2: Right-handed end dome. The top pane indicates fluxes at
two cross-sections. The bottom pane shows potential scenarios for
particle fluxes with associated probabilities.

toward the right from cross-section 1 may strike a cryo pump-
ing surface with a probability p or the wall of the end dome
with a probability 1 − p. A particle striking the cryo surface
may reflect with a probability 1− g, where g is the cryo pump
capture probability. Thus, a warm incoming particle may re-
flect from the end dome section as a cold particle with the
probability (1−g)p and as a warm particle with the probability
1− p. Similar logic applies for a cold particle moving toward
the right from cross-section 1. Furthermore, a source of par-
ticles at the end dome may create another contribution to the
flux moving toward the left from cross-section 2. We can re-
late the inflow of particles with densities [n+

w1, n
+
c1, n

−
w2, n

−
c2]

to the outflow of particles with densities [n+
w2, n

+
c2, n

−
w1, n

−
1 ]

through a probability transfer matrix in the following way:n
+
w2

n
+
c2

n
−
w1

n
−
c1

 =

[
0 0 0 0
0 0 0 0

1 − p 1 − p 0 0
(1 − g)p (1 − g)p 0 0

]
◦ T ·

n
+
w1

n
+
c1

n
−
w2

n
−
c2

+

 0
0
ns
w

ns
c

 , (8)

where matrix T is needed to account for the flux conservation
and symbol ◦ in the equation above refers to the Hadamard
product13 where the two matrices are multiplied element-wise,
i.e. for C = A◦B each element is computed as Cij = AijBij .
The first two rows of the probability transfer matrix express
the boundary condition of no flux out of the vacuum chamber
(n+

w2 = n+
c2 = 0). The assumption of the infinite closeness

of the two cross-sections allows us to ignore the conductance
effects in the end dome section, and thus using the equality
of the left-going fluxes (n−

w2 = n−
w1 and n−

c2 = n−
c1) we can

rewrite Eq. (8) as a boundary conditionn
+
w1

n
+
c1

n
−
w1

n
−
c1

 =

[
1 0 0 0
0 1 0 0

1 − p 1 − p 0 0
(1 − g)p (1 − g)p 0 0

]
◦ T ·

n
+
w1

n
+
c1

n
−
w1

n
−
c1

+

 0
0
ns
w

ns
c

 , (9)

where now the first two rows of the probability transfer ma-
trix state the identity relationship for the warm and cold right-
moving fluxes and the bottom two rows determine the prob-
abilities of the fluxes reflecting from the end dome surface.
The right-handed boundary condition can now be written in
the matrix notation as

n1 = R · n1 + ns
RB , (10)

where n1 = [n+
w1, n

+
c1, n

−
w1, n

−
c1], n

s
RB = [0, 0, ns

w, n
s
c] and

the flux transfer matrix R is defined as

R =

[
1 0 0 0
0 1 0 0

1 − p 1 − p 0 0
(1 − g)p (1 − g)p 0 0

]
◦ T. (11)

Using similar arguments we can show that the left-handed
boundary condition can be written as

n1 = L · n1 + ns
LB , (12)

where ns
LB = [ns

w, n
s
c, 0, 0] and the flux transfer matrix L is

defined as

L =

[
0 0 1 − p 1 − p
0 0 (1 − g)p (1 − g)p
0 0 1 0
0 0 0 1

]
◦ T. (13)

B. Cylindrical Section

Deriving the flux transfer matrix for the cylindrical section
with a pump is more challenging because a path that a particle
takes while traversing the section may contain infinite chain
of events, such as a collision with a wall or a pump and ab-
sorption by the cryo surface. In order to make the derivation
tractable we assume that all collisions with the wall or the
pump occur in the middle of the cylindrical section.

In addition to the probabilities p and g defined in the previ-
ous section, we also need to define the probability for a par-
ticle to transit through the section without striking the wall c
and the overall probability of transition to the opposite side
of the section – the Santeler’s probability s9. The transition
probability c is needed for the particles whose temperature is
different than the chamber wall temperature, while the San-
teler’s probability is used when the gas and the wall tem-
peratures are equal. The Santeler’s probability is defined by
Eqs. 3(c) and 3(d) as a function of the section’s length l and its
diameter d. In some custom-made vacuum chambers the cry-
opumping surfaces may protrude significantly from the cham-
ber wall or be located inside the chamber, thus invalidating the
use of the Santeler’s probability in the Flux model. We will
ignore this effect because such configurations require recalcu-
lation of the probability s and do not lend well to a generic
analysis.

The probability of a particle transiting a section without
striking the wall can be determined using a Monte Carlo sim-
ulation. We simulated 1000 particles that were homogenously
distributed at one end of a cylinder at the beginning of the
simulation and were allowed to propagate according to a ran-
domly selected velocity in three dimensions. The velocity
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FIG. 3: Transition probability for a cylindrical section of length l and
diameter d. The open circles represent the results of multiple Monte-
Carlo simulations, while the solid curve is a Hill equation fit to the
simulation data.

was selected in accordance with the thermal distribution cor-
responding to the temperature T of the gas. The particles that
impinged on the chamber wall were removed from the simu-
lation. The transition probability c was computed as a ratio
of the number of particles that reached the opposite side of
the section without striking the wall to the initial number of
particles entering the section. We performed multiple simula-
tions with a range of gas temperatures and section lengths and
diameters. We found that the results did not depend on the
gas temperature, as expected for a non-collisional particle dis-
tribution. Furthermore, when plotted against the aspect ratio
r/l the simulation results collapsed to a single curve, shown
in Fig. 3. The curve was fitted with the Hill equation14

c = b+
m− b

1 + (∆
l

r
)a

while forcing b = 0 and m = 1 to ensure that the probability
is zero when r/l = 0 and is one when r/l → ∞. The best fit
was obtained with ∆ = 2.8157 and a = 1.0906.

With the four probabilities (p, g, s, and c) defined we
can now derive the flux transfer matrix. Figure 4 shows a
schematic of a section with the corresponding probability di-
agrams below it. The strategy for deriving the flux transfer
matrix is to first write down a matrix that maps the flux of par-
ticles into the control volume onto the flux of particles leaving
it from both ends. Then, we manipulate the resulting matrix
to map the flux of particles through the boundary 1 onto the
flux of particles through the boundary 2.

The first probability diagram (pane b) shows the probability
chains for the warm gas moving in the positive direction (to-
ward the right of the figure) through the boundary 1, n+

w1. A
particle can either strike the pump with a probability p, transit
to the boundary 2 with a probability (1 − p)s, or come back

n
c1

+

p

n
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n
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FIG. 4: Schematic of a chamber section with a pump showing the
fluxes at the two cross-sections. The probability diagrams below the
schematic outline the probability chains for the right-moving warm
particles (top pane) and cold particles (bottom pane). The probability
chains for the left-moving particles are obtained by substituting the
solid spheres with the included dashed spheres, as appropriate.

to the boundary 1 with a probability (1− p)(1− s) after col-
liding with the wall. There is a probability g that a particle
that strikes a pump will be adsorbed (pumped) or probability
0.5(1− g) that the particle will not be adsorbed and reflect in
either the positive or negative direction. That particle, moving
in either direction, can then either transit the chamber with a
probability c0.5 without colliding with the wall or collide with
the wall with a probability (1 − c0.5). The subscript “0.5” in
the transit probability implies that we compute this probabil-
ity with 0.5l instead of l, assuming that the collision occurred
in the middle of the chamber. Finally, the particle that was
scattered by the pump and then collided with the wall can ei-
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ther traverse the rest of the chamber with a probability s0.5
or reverse the direction and exit on the opposite end with a
probability 1 − s0.5. Here again subscript “0.5” refers to the
Santeler’s probability calculated from the middle of the sec-
tion. Similar logic applies to a warm particle moving in the
negative direction through the boundary 2 (n−

w2), as indicated
by the dashed circles in the top probability diagram of Fig. 4.

The probability diagram for a cold particle is shown on the
bottom of Fig. 4. Here a cold particle moving in the positive
direction through the boundary 1 can either transit the section
with a probability c without striking the wall or the pump,
strike the pump with a probability (1− c)p, or strike the wall
with a probability (1 − c)(1 − p). After a wall collision, the
particle can either continue in the same direction to exit at the
boundary 2 with a probability s0.5 or reverse the direction and
exit the section at the boundary 1 with a probability 1 − s0.5.
After a pump collision we can apply the same logic as we
used for the warm particles in the paragraph above. Finally,
a similar probability diagram can be drawn for a cold particle
moving in the negative direction through the boundary 2 (n−

c2),
as indicated by the dashed circles in the bottom probability
diagram of Fig. 4.

The probability transfer matrix B connects the input
flux vector [n+

w1, n
+
c1, n

−
w2, n

−
c2] with the output flux vector

[n+
w2, n

+
c2, n

−
w1, n

−
1 ] such that

n+
2

{
n−
1

{

n+
w2

n+
c2

n−
w1

n−
c1

 =

Bd Bs

Bs Bd

 ◦ T ·


n+
w1

n+
c1

n−
w2

n−
c2


}
n+
1}

n−
2

(14)

where Bd and Bs are 2× 2 matrices

Bd =

[
(1 − p)s

+0.5p(1 − g)(1 − c0.5)
(1 − p)(1 − c)s0.5

+0.5p(1 − g)(1 − c)(1 − c0.5)

0.5p(1 − g)c0.5 c + 0.5p(1 − g)(1 − c)c0.5

]
,

Bs =

[
(1 − p)(1 − s)

+0.5p(1 − g)(1 − c0.5)
(1 − p)(1 − c)(1 − s0.5)

+0.5p(1 − g)(1 − c)(1 − c0.5)

0.5p(1 − g)c0.5 0.5p(1 − g)(1 − c)c0.5

]
.

(15)

The T matrix is needed in order to maintain flux conservation,
just like in the end dome calculation. As the final step in the
derivation of the flux transfer matrix we rewrite Eq. (14) as
a set of linear equations, which we solve for the flux through
the boundary 2 [n+

2 , n
−
2 ] as a function of the flux through the

boundary 1 [n+
1 , n

−
1 ]. The system of linear equations corre-

sponding to Eq. (14) is

n+
2 = Bd · n+

1 +Bs · n−
2

n−
1 = Bs · n+

1 +Bd · n−
2

(16)

where we have omitted the terms of the T matrix, as they can
be added later without invalidating the derivation. The system
above can be solved to produce

n2 = C · n1, (17)

where nx = [n+
wx, n

+
cx, n

−
wx, n

−
cx] is the flux vector through

the boundary x in both directions. The flux matrix C is de-

fined as

C =

Bd −Bs ·B−1
d ·Bs Bs ·B−1

d

−B−1
d ·Bs B−1

d

 ◦ T (18)

A source term can be added to Eq. (17), similarly to
Eqs. (10) and (12). We will show an example of such a case in
the next section. While matrix C may look complicated, once
the four probabilities are determined, the matrix becomes a
straight-forward numerical 4 × 4 matrix, which can be easily
used to solve for the fluxes.

Unlike the Node model, the Flux model requires the pres-
sure gauge position and orientation in order to convert fluxes
into pressure. The pumping speed of a vacuum facility is de-
fined as the ratio of the source fluxes over the particle density
as measured by a pressure gauge per unit area:

P eff =
ns

√
kbTw

2πm

Ang
, (19)

where we assumed that the gas source is warm and that ng is
the particle density inside the pressure gauge and is computed
as

ng =

√
Tw

Tg
nwx +

√
Tc

Tg
ncx, (20)

where nwx and ncx are the warm and cold particle den-
sities through the boundary x where the ion gauge is lo-
cated in the direction toward the gauge opening, and Tg is
the temperature of the gauge cavity. Equations (10), (12),
(17), and (19) with the appropriate definitions of the four
probabilities (p, g, c, and s) for each chamber section and the
boundary conditions are all that is necessary to construct the
Flux model for a vacuum chamber.

C. Ideal Pumping Speed of an Infinite Cryo Surface

A simple example can serve as a useful exercise and to
demonstrate the utility of the Flux model. We consider a short
cylindrical section of a large radius without pumps connected
to the end domes on either side, as shown in Fig. 5. The sur-
face of the right-end dome is maintained at a cold temper-
ature, which provides cryopumping, while the opposite end
dome is maintained at a warm temperature and serves as a gas
source. The right-end dome evaporates a small amount of gas
that contributes nv to the gas density. We can treat the evap-
orating gas as a source term at the right boundary. The set of
equations describing the the system is

n1 = L · n1 + ns

n2 = C · n1

n2 = R · n2 + nv,

(21)

where ns = [ns, 0, 0, 0] and nv = [0, 0, nv, 0]. We can com-
bine the three equations above to solve for n1:

n1 = L · C−1 ·R · C · n1 + L · C−1 · nv + ns (22)
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FIG. 5: Schematic showing infinite parallel plates connected by a
cylindrical section. A warm gas source is located at the left wall,
while the right wall is at sufficiently cold temperature to pump the
gas.

If we assume that the radius of the system is sufficiently large
to be treated as infinite and since the cylindrical section does
not contain a pump the four probabilities of the flux matrix
C are p = 0, g = 0, c = 1, and s = 1, which reduces it
to the identity matrix. For the right-hand boundary condition
we also have p = 1 while g is left as a parameter. There
isn’t a cryo surface on the left-end dome, so p = g = 0. With
these parameters Eq. (22) reduces to the following set of linear
equations

n+
w1 = (1− g)n+

w1 +

√
Tc

Tw
gnv + ns (23a)

n+
c1 = 0 (23b)

n−
w1 = 0 (23c)

n−
c1 =

√
Tw

Tc
(1− g)n+

w1 + gnv. (23d)

Equations 23(b) and (c) state that there is no flow of cold par-
ticles in the positive direction and no flow of warm particles
in the negative direction across boundary 1, as expected. With
a pressure gauge oriented to measure the flux of warm parti-
cles, as shown in Fig. 5, and also assuming that the gauge is at
the warm temperature Tw, the density inside the gauge equals
n+
w1 (using momentum conservation in and out of the gauge).

Solving 23(a) for the source density ns and substituting
the ideal equation of state for the evaporation density (Pv =
nvkbTc) and the warm particle density (Pw = n+

w1kbTw) we
can derive the pumping speed, which is given as the ratio of
the “throughput of the system divided by the pressure mea-
sured at the point at which the pumping speed is defined”8, or
equivalently the input flux divided by the density at the pres-
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FIG. 6: Pumping speed as a function of the distance separating two
finite parallel plates. The chamber radius of 1.2 m was assumed in
the calculations.

sure gauge, as

P = A
nsvs/4

ng
= Ag

vs
4

n+
w1 −

√
Tc

Tw
nv

n+
w1

= Ag

√
kbTw

2πm

[
1− Pv

P

√
Tw

Tc

]
.

(24)

where A is the cryo array surface area and Pv is the vapor
pressure of the gas. For xenon Eq. (24) gives the maximum
pumping speed (assuming g = 1, and Pv = 0) of 54, 975 L/s
per m2 of the cryopumping area, which is the number used in
Ref. [15]. If we assume that the system has a finite radius, the
conductance losses will decrease the pumping speed because
probabilities s and c decrease as a function of length. This
dependence is shown in Fig. 6, where we assumed a radius of
1.2 meters. In order to obtain the curve shown in the figure
we solved Eq. (22) for multiple values of spacing between the
end domes.

IV. MODEL APPLICATIONS

In this section we use the Node and the Flux models to ana-
lyze two electric propulsion testing facilities at The Aerospace
Corporation. The two facilities have sufficiently different con-
figurations to demonstrate the flexibility of both models. Fur-
thermore, we use the Node and Flux models to analyze a new
facility, which is currently being designed.

A. EP2

The first facility that we analyze is the EP2 vacuum
chamber2,16. The chamber is roughly 2.4 m in diameter and
10 m long. It is pumped by 10 PHPK TM-1200 cryopumps,
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as shown in Fig. 7. Two re-entrant cryopanels, labeled P3

and P4 are located at the left-end dome of the tank. Four
other re-entrant cryopumps are arranged sequentially next to
the right-end dome and are labeled P1, P2, P9, and P10, as
shown. Finally, two cryotubs, labeled P5 and P6 are located
1.6 m from the left-end dome and two more cryotubs, labeled
P7 and P8 are located 3.2 m from the left-end dome. The re-
entrant cryopumps have the rated pumping speed of 35 kL/s
on xenon, while the cryotubs have the rated pumping speed
of 25 kL/s on xenon. We note that the quoted distances and
dimensions are approximate, but sufficiently accurate for the
current calculation.

One of the unique features of the EP2 chamber is the
0.9 m diameter, 1.5 m long fiberglass chamber appendix that
enables the Electromagnetic Interference and Compatibility
(EMI/EMC) testing of the EP devices. The fiberglass cham-
ber is connected to the main chamber through a gate valve,
thus a thruster may be located in the main chamber for perfor-
mance and plume measurements or in the fiberglass chamber
for the EMI measurements, as indicated in Fig. 7.

During experiments the pumping speed is computed using
pressure measured by an ion gauge located within 10 cm of
the thruster, placed on a T with an opening in the direction of
the thruster plume exhaust, in a configuration adopted from
Ref. [4]. Pumping speed as a function of the number of active
pumps is shown by open circles in Fig. 8. The label next to
each data point indicates the identity of the active pumps. For
example, cryotub #7 (P7 in Fig. 7) was used when only one
pump was active.

The Node model for the main chamber (without includ-
ing the fiberglass appendix) can be computed as a sum of the
pumping speed contributions of the ten pumps determined at
the thruster location:

P eff =
∑

i=1,2,9,10

P eff
i + P eff

3,4 + P eff
5,6 + P eff

7,8

1/P eff
3,4 = 1/(P3 + P4) +

∑
i=1,2

1/Ci

1/P eff
5,6 = 1/(P5 + P6) + 1/C2

1/P eff
7,8 = 1/(P7 + P8) + 1/C3

250

200

150

100

50

0

Pu
m

pi
ng

 S
pe

ed
, [

kL
/s

]

108642
Number of Active Pumps

 Measured
 Node Model
 Flux Model

#1-10

#7

#6, 7

#1, 2, 6, 7

#1-8

FIG. 8: Pumping speed of the EP2 chamber as a function of the
number of active pumps. The pump identity is noted for each data
point

1/P eff
10 = 1/P10 +

∑
i=3,4

1/Ci

1/P eff
9 = 1/P9 +

∑
i=3−5

1/Ci

1/P eff
2 = 1/P2 +

∑
i=3−6

1/Ci

1/P eff
1 = 1/P1 +

∑
i=3−7

1/Ci

(25)

We note that a “reduced” radius was used in order to calculate
conductances C5, C6, and C7 in order to account for the par-
tial blockage of the chamber by the re-entrant pumps 1, 2, 9,
and 10. Pumping speed at the thruster location as a function
of the number of active pumps can be computed by zeroing
out the appropriate values of Pi. Results of such a computa-
tion show a good agreement with the experimentally derived
pumping speed, as shown in Fig. 8, where the Node model is
indicated by the closed circles. We note that for this compari-
son the identity of the active pumps matched the experimental
setup.

In order to compute the effective pumping speed measured
at the thruster, when it is located in the fiberglass chamber,
we need to adjust each line of Eq. (25) to include conductance
C8. For brevity, we will not write down the resulting set of
equations, but note that the effective pumping speed computed
inside the fiberglass chamber with all 10 cryopumps active is
64.5 kL/s, which is about a third of the pumping speed mea-
sured with the thruster in the main chamber. That value is
consistent with the reported pressure values in the fiberglass
chamber.5

We construct the Flux model for EP2 using five cylindrical
sections outlined by the gray dashed lines in Fig. 7, with the
first four labeled by C1, C2, C3, and C4. The last cylindrical
section is a combination of the sections labeled C5,C6, and
C7 with a total pumping speed corresponding to the sum of
pumps P10,P9, P1 and P2 – that combined section is referred



9

Door

End Dome

End Dome

C
2C

1

C
3

RR

L

Near Field Facility

1 m

1.5 m

0.5 m

Thruster

FIG. 9: Schematic of the Near Field Facility.

as C5 in the following discussion. A more accurate model can
be constructed by treating each pump and each section sepa-
rately, but as we shall see, this simplification still produces a
good agreement with the measurements. The left-end dome
is partially covered by cryopumps and has no gas sources.
The right-end dome, on the other hand, has no pumps but is
treated as having a gas source. The gas source is produced by
the thruster plume that impinges and thermalizes on the right-
end dome. The resulting set of equations that define the Flux
model for EP2 is

n1 = L · n1 n2 = C1 · n1

n3 = C2 · n2 n4 = C3 · n3

n5 = C4 · n4 n6 = C5 · n5

n6 = R · n6 + nin,

(26)

where nin = [0, 0, ns, 0] and the location at which we mea-
sure fluxes n1 through n6 is as indicated in Fig. 7. The
equations above can be combined to solve for the flux at the
thruster location n3

C5 · C4 · C3 · n3 = (27)

= R · C5 · C4 · C3 · C2 · C1 · L · C−1
1 · C−1

2 n3 + nin.

The pumping speed at the thruster is computed similarly to
Eq. (24)

P = A
nsvs/4

n−
w3 +

√
Tc

Tw
n−
c3

, (28)

where A = πr2 is the area of the chamber cross-section. We
note that the denominator in the equation above takes into ac-
count fluxes of both warm n−

w3 and cold n−
c3 particles con-

tributing to the gauge density ng. In order to compute Eq. (27)
we assume that Tw = 300 K, Tc = 90 K. The front of the
PHPK TM-1200 pumps contains LN2 cooled louvers, which
protect the helium cooled inner sail of the pumps.17 We thus
chose capture probability g = 0.4 to correspond to the lou-
vered geometry.8 This assumption is consistent with the re-
sults obtained in Refs. [10] and [11]. The pumping speed

computed with the Flux model for EP2 is shown for the same
combination of active pumps as measured in Fig. 8. Just like
the Node model, the Flux model shows a good agreement with
the experimentally measured pumping speed.

B. The Near Field Facility (NFF)

The Near Field Facility (NFF) at The Aerospace Corpo-
ration has been used for diagnostic development18 and small
thruster characterization19. The facility comprises a 3 m long
and 1.5 m diameter stainless steel chamber, shown schemat-
ically in Fig. 9. The chamber is pumped by two 0.9 m by
0.5 m He-cooled nude sails, which are cooled to 15 K by two
CVI CBST 6.0 compressors. A liquid nitrogen shroud en-
velops the entire cylindrical portion of the chamber and the
end dome (on the left of the schematic), while multi-layered
insulation covers the door (on the right of the schematic). Two
copper panels, cooled by liquid nitrogen, are installed in front
of the He sails. The copper panels are designed to screen the
sails from the thruster beam. The side of the panels facing
the thruster is covered with carbon felt to reduce sputtering.
Carbon felt is also used on a circular panel covering the right-
end dome of the chamber. Multiple thermocouples indicate
that the temperature of the LN2 shroud and the copper panels
range between 90 K and 120 K.

The Node model for the NFF chamber is particularly sim-
ple and consists of two sections indicated by C2 and C3 in
Fig. 9. We calculate the pumping speed of the nude sails Ps

using Eq. (24) and conductance C of the cylindrical span be-
tween the thruster location and the center of the nude sails
(1.75 m) using Eq. (3). One remaining unknown in Eq. (24)
is the capture probability g, which cannot be measured di-
rectly. The capture probability is a product of the sticking
coefficient, which is the probability of a particle adsorbing
to a surface and a view factor, which is the probability of a
particle getting to the surface. For the nude sails the view fac-
tor for the sail surfaces facing the chamber walls is assumed
to be unity, however the view factor for the inner-facing sur-
faces cannot be easily estimated. Furthermore, the sticking
coefficient cannot be measured directly either. We therefore
compute the pumping speed for three values of capture proba-
bility g = 0.25, 0.5 and 0.85 which should bound the pumping
speed estimation. The Node model equation is

P (T ) =
Ps(T ) + C(T )

Ps(T )C(T )
, (29)

where we left gas temperature as a variable. The gas temper-
ature inside the NFF is determined by the wall temperature,
which varies between 90 and 120 K. If the accommodation co-
efficient (which is defined by the thermal transfer between the
wall and the impinging gas) is not unity the gas temperature
may be higher than the wall temperature. Pumping speed esti-
mation from the Node model as a function of gas temperature
is shown in Fig. 10 with solid black curves for three values of
g. The hashed box in the figure indicates the range of the mea-
sured chamber wall temperatures and pumping speeds. The
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results indicate that the capture probability for the sails in the
NFF system is between 0.3 and 0.5.

The Flux model for the NFF chamber can be constructed
using three cylindrical sections, as indicated in Fig. 9. The
space between the chamber door and the cryo sails is split into
two sections (section 1 and 2) in order to define the thruster
location at the boundary between the two sections. These two
sections have no pumps and thus p = g = 0. The third section
contains the cryo sails. The probability of gas impinging on
the sails p is defined as the ratio between the total sail area
and the chamber wall area. Additionally, to account for the
reduction in the view factor of the inner-facing surfaces of
the sails, we reduce the “effective” inner area by a factor of
2. This is an arbitrary assumption in lieu of a more careful
analysis, which is required for a higher fidelity simulation.
The set of equations that describes the Flux model for the NFF
is

n1 =L · n1 n2 =C1 · n1

n3 + ns
3 =C2 · n2 n4 =C3 · n3

n4 =R · n4.

(30)

In the equation set above we make a conservative assumption
that all of the thruster plume scatters from the LN2 cooled,
felt-covered copper panels that screen the cryo sails and thus
introduced a source term ns

3 = [0, 0, ns, 0] in the second cylin-
drical section. Allowing a part of the plume to scatter off the
right-end dome should increase the calculated pumping speed.
We can solve the system of equations above for the fluxes at
the thruster location n2

C3 · C2 · n2 = (31)

= R · C3 · C2 · C1 · L · C−1
1 · n2 + (I −R) · C3 · ns

3

and then calculate the pumping speed at the thruster location
using Eq. (28) with n−

w2,c2 substituted for n−
w3,c3. In the above
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FIG. 11: Schematic of the EP3 vacuum chamber. Pumps P1 through
P4 are custom-made cryo surfaces, while P5 consists of 6 PHPK
TM-1200i cryopumps arranged in a ring configuration.

equation I is the identity matrix. The Flux model predictions
for the pumping speed as a function of gas temperature are
shown by gray dashed curves in Fig. 10. The curves with
the capture probability of 0.25 show a good agreement with
the Node model results, however with a higher capture prob-
ability the Flux model predicts a higher pumping speed for
a given gas temperature. When compared to the measured
pumping speed and cryo shroud temperature of the chamber
both models indicate that the capture probability of the cryo
sails is between 0.3 and 0.5.

C. EP3

As a final example we apply both models to predict the
pumping speed of the new EP3 facility. The new vacuum
chamber is designed as a 4.27 m diameter, 10 m long metal
cylinder with a conical fiberglass antechamber connected to
the main chamber, as shown in Fig. 11. The pumping system
consists of four custom made helium cooled cryo ring assem-
blies, indicated as P1, P2, P3 and P4 in Fig. 11 and six PHPK
TM-1200i reentrant cryopumps arranged in a ring configura-
tion next to the chamber door and indicated as P5. Each cryo
ring consists of seven cryo panels arranged in the octagonal
configuration with the bottom panel absent to accommodate a
walkway. Each cryo panel is approximately 1.3 m long (along
the vacuum chamber cord) and 1.2 m wide (along the cham-
ber circumference). Additionally, each helium cooled panel
is sandwiched between two LN2 cooled surfaces. The inner
LN2 surface has louvered openings to allow gas penetration
to the helium surface. Finally, a radiation shield is added to
each panel as the outermost surface. We will ignore the ra-
diation shield as it does not have a significant effect on the
pumping speed calculation. The ring configuration was opti-
mized to allow significant pumping both on the front and the
back surfaces of the helium cooled panel. Therefore, in or-
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der to calculate the total pumping speed we need to take into
account conductance in the core of the chamber as well as in
the annular region between the helium panels and the chamber
wall.

A thruster can be placed in two locations within the cham-
ber. The first location is between the first and second cryo
rings, and the second location is in the back of the fiberglass
antechamber, as shown in Fig. 11. We will derive the Node
and Flux models for the thruster located in the main chamber,
and for brevity will only provide the final results for the pump-
ing speed with the thruster in the fiberglass antechamber. The
Node model is calculated using the effective pumping speed
in the core of the chamber, defined as the space from the cen-
terline to the cryo rings, and the annular region, between the
cryo rings and the chamber wall. The effective pumping speed
of the chamber core is

P eff
core =

∑
i=1−5

P eff
i

1/P eff
1 = 1/P1 + 1/C2

1/P eff
2 = 1/P2 + 1/C3

1/P eff
3 = 1/P3 +

∑
i=3,4

1/Ci

1/P eff
4 = 1/P4 +

∑
i=3−5

1/Ci

1/P eff
5 = 1/P5 +

∑
i=3−6

1/Ci,

(32)

where conductances Ci are calculated using the distance from
the thruster to the center of the pumping surface i, locations
shown by the gray dashed lines in Fig. 11. The effective
pumping speed in the annular region of the chamber P eff

ann

can be computed using a similar set of equations with the
conductances computed with the adjusted radius, as described
by Eq. (4)(b), and with one additional conductance, account-
ing for the gas path from the core to the annular region of
the chamber, added to every equation above. We also note
that pumping speed for P1 through P4 are computed using
equation Eq. (24) with g = 0.4 for the P eff

core to account for
the louvers on the inner facing surfaces and with g = 0.85
for the outer facing surfaces. The overall pumping speed of
the system is P eff = P eff

core + P eff
ann . The Node model es-

timates 700,570 L/s as the pumping speed measured at the
thruster. In this case the Node model provides a conserva-
tive estimate since it does not include all possible paths for
the gas to reach the pumping surfaces. The contributions of
the individual cryo-rings and the pumps are shown in Table
I. The table shows that ring 2 provides the greatest contribu-
tion to the overall pumping speed – this is expected, as ring
2 is located immediately downstream of the thruster. The ta-
ble also lists the pumping speed contributions of the back side
(outward facing surfaces) of each of the four cryo-rings. The
Node model predicts that the cryo-ring back surfaces provide
∼ 45% of the overall pumping capacity. When a thruster is in-
stalled in the fiberglass antechamber the Node model predicts
324,473 L/s measured at the thruster location.

The Flux model is constructed by dividing the chamber into

Pumping speed, Ring 1 Ring 2 Ring 3 Ring 4 Pumps
[L/s]

Node Model Total 184,010 195,248 149,089 113,325 58,897
Back 91,946 101,429 73,988 47,968

Flux Model Total 186,617 234,296 442,664 183,638
Back 63,607 136,515 204,888

TABLE I: EP3 pumping speed breakdown by pumping the elements.

7 cylindrical sections. Section 6 contains cryo-rings P3 and
P4 because these two rings are immediately adjacent and can
be treated as one cryo surface. Sections containing the cryo-
rings are separated into the core (C11, C41, and C61) and an-
nular (C12, C42, and C62) regions. The Flux model for the
chamber can be written as

n1 = L · n1 n11 =
s11

s11 + s12
n1

n2 = C11 · n11 + C12 · n12 n12 =
s12

s11 + s12
n1

n3 = C2 · n2

n4 = C3 · n3 n41 =
s41

s41 + s42
n4

n5 = C41 · n41 + C42 · n42 n42 =
s42

s41 + s42
n4

n6 = C5 · n5 n61 =
s61

s61 + s62
n6

n7 = C61 · n61 + C62 · n62 n62 =
s62

s61 + s62
n6

n8 = C7 · n7

n8 = R · n8 + nin.

(33)

In the above equations we assumed that the split between
the fluxes flowing in the core of the chamber and the annu-
lar region is proportional to the Santeler’s probabilities in the
respective regions. Solving the set of equations above for the
flux at the thruster location n3 we obtain the Flux model equa-
tion for the EP3 facility

C7 · C6 · C5 · C4 · C3 · n3 = (34)

= R · C7 · C6 · C5 · C4 · C3 · C2 · C1 · L · C−1
1 · C−1

2 n3 + nin.

The Flux model predicts an overall pumping speed of
1,426,920 L/s for the EP3 facility. This value is approximately
twice of the Node model estimate. The individual ring contri-
butions to the overall pumping speed are shown in Table I.
Unlike the Node model, where the individual contributions
add up to the total pumping speed, the sum of the individual
contributions in the Flux model adds up to 1,047,215 L/s, a
number smaller than the total pumping speed predicted by the
Flux model with all pumping surfaces active. This discrep-
ancy is produced by redistribution of fluxes inside the cham-
ber when not all rings (or pumps) are operating. Thus, while
the Flux model is composed of linear equations, the result-
ing solution may produce a non-linear result. The Flux model
predicts a total of 300,539 L/s as a contribution from the back
side of the four rings (combined), which is 21% of the total
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FIG. 12: Number density with a 20 kW thruster and pumps (left) and
shroud (right)

pumping speed. Finally, the Flux model predicts 91,817 L/s
as the pumping speed inside the fiberglass antechamber.

While the two models show significant disagreement, the
complexity of the EP3 pumping configuration leads us to be-
lieve that the Node model, which does not account for all pos-
sible gas fluxes, may produce a conservative answer, while the
Flux model result is more accurate. Thus, the actual pumping
speed may be somewhere between the two values.

In order to gain more confidence in the analytical results
we compared them to a detailed numerical simulation of
the EP3 facility. The rarefied gas transport simulation pro-
gram CTSP20 was used for this study. The gas population
within the chamber was represented with simulated particles
that were injected at the thruster location. As CTSP does
not contain a plasma simulation module, the thruster plume
was approximated with a two-component drifting Maxwellian
source. The two components corresponded to the primary
high velocity populations and a smaller, more diffuse popu-
lation of the slow-moving charge exchange ions. Particle po-
sitions were integrated through small time steps according to
x⃗k+1 = x⃗k + v⃗k∆t. During each push, the code also checked
for surface impacts. The chamber geometry was represented
by a triangular surface mesh containing over 600,000 ele-
ments. This mesh was exported directly from a CAD drawing
allowing us to retain small features that would likely be lost
during the traditional meshing process. The surface elements
were collected into several logical groups used to assign the
particle impact behavior. The temperature of all surfaces was
assumed to be 90K, with the exception of the chamber wall
and the pumping cryo panels. The wall temperature was set
to 290K, while the cryo panels were at 20K. Therefore, par-
ticles impacting any surface besides the cryo panels reflected
back to the chamber. The post-impact velocity was obtained
by sampling speed from the Maxwellian distribution at the
surface temperature and direction from the cosine law about
the surface normal. An 85% sticking coefficient was assumed
on the cryo panels. The remaining 15% of molecules were
re-emitted using the same model as used on all other surfaces.

Unlike Monte-Carlo ray-tracing codes, CTSP concurrently
simulates the entire gas population in a manner similar to ap-

proaches found in PIC or DSMC. This allows the code to
compute macroscopic gas parameters such as number density,
partial pressure, or bulk velocity. Figure 12 shows the typical
number density variation in the EP3 facility assuming a 20kW
thruster. The grayscale shading on the cryogenic shroud sec-
tions indicates the relative amount of condensed mass indi-
cating that the density (and hence pressure) is not uniform.
While the density is the highest near the thruster, there is a
secondary peak at the back wall due to the combined forward
and return molecular flux. This particular simulation result
was obtained assuming free-molecular flow, so collisions be-
tween the two populations were not considered. We can also
observe a trapping effect of the LN2 louvers placed in front
of the cryo panels. Furthermore, we can use this result to es-
timate the chamber pumping speed. From mass conservation,
we have

∂n

∂t
+∇ · (nu) = 0. (35)

At steady state with constant density (which may not be a par-
ticularly good assumption), we have

(nuA)1 = (nuA)2, (36)

where 1 and 2 are the total molecular flow rates in to and out of
the chamber. The inflow is obtained from the thruster source
mass flow rate, (nuA)1 = ṁ/m. The product uA = Q, or
the volumetric flow rate, which is also the pumping speed.
Therefore, we can define

Q =
ṁ

m

1

n
, (37)

which can then be evaluated at various points using the local
value of number density n. For instance, at the highlighted
point, where n = 2.08× 1017m−3, we obtain Q = 2.0 ML/s.
The thruster mass flow rate ṁ was calculated assuming 300 V
discharge current and 100% ionization with no double ions.

V. CONCLUSIONS

In this paper we derived two analytical models for com-
puting the pumping speed of a vacuum chamber. We specifi-
cally focused on the vacuum chamber configurations that are
relevant for testing electric propulsion devices. The Node
model was derived using a well-known calculation of the ef-
fective pumping speed adjusted by the conductance between
the pump and the measurement location. We showed how this
simple approach can be used for complex geometries. We
found that in the two tested cases this approach produced rea-
sonable agreement with the experimentally measured pump-
ing speed. This model was then used to produce a conserva-
tive pumping speed estimate for the new vacuum chamber that
is currently being designed.

We derived the Flux model by balancing particle fluxes with
two temperatures. The two temperature approach was neces-
sitated by the chamber surface temperatures – one at the ambi-
ent condition, such as the chamber walls, and second at a cold
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temperature indicative of the cryo-pumps. The Flux model
consists of two component matrices – the boundary condi-
tion matrices (left and right) and the cylindrical section ma-
trix. These matrices can be combined in an appropriate fash-
ion to simulate most of the relevant chamber geometries. The
Flux model produced a good agreement with the experimen-

tally measured pumping speed for the two chambers investi-
gated in this paper. The Flux model prediction of the pumping
speed for the new chamber was twice as high as the pumping
speed predicted by the Node model and within 30% of the PIC
model results.
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