<u>Mesh-Free Contamination Transport Modeling using CAD</u> <u>Geometries</u>

Lubos Brieda and James Robertson Particle In Cell Consulting LLC, Westlake Village, CA, USA

2023 NASA Goddard Contamination Control, Materials, and Planetary Protection Workshop

September 12 - 14, 2023

Partial funding provided by NASA SBIR Phase 1 contract 80NSSC22PB145. Betsy Pugel was the Task Manager.

Contamination modeling conceptually very simple:

Determine how much material deposits on surfaces of interest due to outgassing and particulation on other surfaces

Transport Mechanisms

• Contaminant build up on some element "e" can be described mathematically as

$$\Gamma_{e,net} = \sum_{j}^{n_{el}} k_{je} \Gamma_{i,out} - \Gamma_{e,out} \quad ; j \neq e$$

- where k_{ie} is the **view factor** between from some source element "j"
- Various numerical tools available to calculate view factors
- Monte-Carlo methods use some form of ray tracing (for free-molecular flow) or particle pushing (to account for forces or collisions):

```
for k in num time steps:
    for e in surfaces:
        generate particles on surface e
    for p in particles:
        integrate velocity of particle p through dt
        integrate position of particle p through dt
        check for surface impact (deposit / bounce off)
        apply collisions
```


Successfully Deployed in Support of NASA Missions

2023 NASA Goddard Contamination Control, Materials, and Planetary Protection Workshop

Modeling Approach

The ACTUAL Modeling Workload

create mesh

assign surface groups

CC responsibility

- Legacy modeling tools utilize surface mesh to store model geometry
 - Triangular/quadrilateral mesh, or assembly of analytical shapes in TD/TSS
 - Inefficient: remeshing required when mechanical design changes
 - Analysis often lags behind latest mechanical design
- Mechanical models tend to contain small features such as drill holes or screws
 - Lead to meshing challenges or an excessive number of surface elements
 - Often requires substantial work to redraw / simplify CAD model!

- Surface elements also need to be organized into groups to assign material properties, surface models, etc.
- Challenge: mechanical and thermal grouping typically NOT compatible with CC needs
- Example: JWST thermal components grouped by external material. Majority of material was kapton to capture MLI outer layer. CC cares about what is *underneath* the MLI!
- Extremely tedious manual work involving selecting groups of coplanar elements.
- Must be redone whenever the mesh changes.
 - Interns come in handy...

- The surface mesh has dual role:
 - 1) Used for particle-geometry boundary checks (did the particle hit something?)
 - 2) Used to store surface data including results (deposition thickness, PAC, etc.) and surface-adsorption model inputs (surface temperature, roughness, material, etc.)
- Mesh not needed in the volume! Can use point clouds to load airflows or electric fields.

CAD models are internally composed of analytically defined shapes (faces). Can we do **line-CAD** intersection test instead of the legacy **line-triangle** to check for surface impact?

And perhaps there is some way to store data on CAD geometries?

OpenCascade

- Elimination of meshing expected to lead to significant reduction in labor cost and ability to automatically re-run analysis when mechanical model is changed
- But how to work with CAD files?
- Open Cascade Technology (OCCT) to the rescue!
 - Open source C++ software for performing 3D CAD analysis
 - Developed by Open Cascade SAS company
 - LGPL 2.1 license, allows use in proprietory applications
- The Bad: documentation very limited, much of our effort involved trial and error

SetDisplayMode() 12/21	myObject3d.Append(new AIS_Point(ppp));
void AIS_InteractiveContext::SetDisplayMode (const Standard_Integer theMode, const Standard_Boolean theToUpdateViewer)	j++;
Sets the display mode of seen Interactive Objects (which have no overridden Display Mode).	}
2023 NASA Goddard Co	ntamination Control. Materials myResult << "done " << j << std::endl;

const

GET INVOLVED RESOURCES + BLOG FORUM + ABOUT	RESEARCH & SCIENCE PROJECTS & PRODUCTS CONTACT
Geometric modeling	Surface and solid modeling
OCCT algorithms allow to:	OCCT comes with algorithms for:
Calculate the intersection of two 2D curves,	Construction of primitives (box, sphere, cylinder,
surfaces, or a 3D curve and a surface	cone, torus, wedge)
Project points onto 2D and 3D curves,	 Computation and comparison of distances between
points onto surfaces, and 3D curves	shapes
onto surfaces	 Construction of prisms and pipes
Construct lines and circles from	Surface extrusion/revolution
Constraints	Defining offset surfaces/curves
from constraints	Defining fillets and chamiers
Construct curves and surfaces	· Boolean operations (input, common, cut, ruse.)
by interpolation and	
approximation	
Data Exchange	Visualization
Data Exchange module allows developing OCCT-based	OCCT visualization toolset provides:
applications that interact with other CAD systems by	Cross platform renderer based on OpenCl and
applications that interact with other CAD systems by	 Cross-platform renderer based on OpenGL and

```
// Handle(Geom_Line) l = new Geom_Line(gp_Pnt(100, 0, 0), gp_Dir(-1, 0, 0));
Handle(Geom_Line) l = new Geom_Line(gp_Pnt(300, 0, 1000), gp_Dir(0, 0, -1));
NCollection_Vector<Handle(AIS_InteractiveObject)> myPts;
```

```
TopTools_IndexedMapOfShape faces;
TopExp::MapShapes (aComp2, TopAbs_FACE, faces);
int i, j=0;
for (i = 1; i <= faces.Extent (); i++) {
   TopoDS_Face face = TopoDS::Face(faces(i));
   Handle(Geom_Surface) S = BRep_Tool::Surface(face);
   GeomAPI_IntCS in(l, S);
   if (in.NbPoints() > 0) {
      const gp_Pnt &pp = in.Point(1);
      Handle(Geom_Point) ppp = new Geom_CartesianPoint(pp);
      myResult << " " << pp.X() << " " << pp.Y() << " " << pp.Z() << std::endl;
      myObject3d.Append(new AIS_Point(ppp));
      j++;
   }
}
```


File Loading

- Developed standalone application to study the feasibility of this CAD-based modeling approach
 - OCPT: OpenCascade Particle Tracer
- First step involved learning how to load and visualize STEP files, and to identify different element groups

- Next had to figure out how to use OpenCascade to find intersections between an arbitrary line and the loaded surface
- Effort greatly complicated by documentation consisting mainly of API documents with very limited information and multiple classes seemingly doing the same thing

- Initial surface impacts visualized using markers not practical for visualizing analysis results
 - Prefer to paint "contour map" on the surface
- Can be accomplished by mapping texture data to the CAD model
 - Intersection code determines texture coordinate and increments corresponding data
- Texture coordinates can also be used to sample surface data to control particle behavior

- STEP files describe geometry using analytical shapes
- Surface parts can be easily transformed
- Could be very useful for modeling deployments of stowed components, instrument slew, rotation of antennas, and planetary body surface operations

Frames from a simulation with a continuous translation and rotation of the antenna dish

- CAD-based time per particle push currently about 100,000 slower than using triangulated surface
 - CAD model in general contains far fewer faces than FEM model (i.e. cylinder can be represented by only 3 shapes) but intersection check more computationally expensive
 - But OCPT not optimized rays intersections tested against entire CAD model
 - CTSP uses octree to limit triangle search only to elements withing the ray's bounding box – similar ordering required in OCPT
- OCPT faster when considering entire workflow can load STEP file and complete analysis while meshing algorithm still running

Case	meshing	geometry load	time per particle
OCPT, Satellite, 3.6 Mb STEP	N/A	0.9	0.012 s
CTSP, Satellite 7.5 Mb UNV UNV	30 min	2 s	5.05e-7 s
OCPT, Instrument, 18 Mb STEP	N/A	10.6 s	0.34 s
CTSP, Instrument	FAIL		
OCPT, Dragonfly, 48 Mb STEP	N/A	16.3 s	0.49 s

- CAD-based modeling approach also very attractive for modeling space weather instruments
 - Analysis involves simulating trajectories of charged particles in an electric field imposed by instrument electrodes
 - Discretized elements used in legacy codes cannot accurately capture the curvature of actual hardware
- Molecular contaminants can also become photoionized and subsequently return to the spacecraft
- Developed a standalone code to demonstrate feasibility of calculating volumetric electric field using solely surface data (surface charge density) coupled with Coulomb force.
- Future work involves investigation of the Boundary Element Method, as well as coupling with volumetric mesh to perform kinetic plasma simulations.

Other Work

- Also interested in modeling dynamic objects specifically dust grains individually represented by unique geometry shapes interacting with ambient plasma and other surfaces
- Being used to model lunar regolith adhesion to spacesuits, experimental work conducted at USC
- Preliminary results just published in IEEE TPS, update at ASEC

- Developed a proof of concept simulation code to demonstrate the feasibility of performing contamination transport analysis directly using CAD geometries
- Proved out the required technology: ability to load STEP files, ability to perform line-CAD intersections, ability to access surface data
 - Also demonstrated ability to compute volumetric electric field using surface charge density
- Several steps remaining before the tool can be used by the CCE community:
 - Code optimization and speedup shapes need to be sorted into an octree to limit search space
 - CC specific algorithms ability to set outgassing rates, assign surface temperatures, specify particle-surface behavior – primarily port from our legacy mesh-based code
 - Graphical user interface as well as input files
 - Spring 2024 ECD for beta version
- Contact: lubos.brieda@particleincell.com

Acknowledgment: Partial funding provided by NASA SBIR Phase 1 contract 80NSSC22PB145. Betsy Pugel was the Task Manager.