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We report on the development of a plasma simulation library for the Arduino microcon-
trollers. The library currently supports 1D hybrid ES-PIC simulation. Through a hardware
interface, such a library could conceptually be used to actively drive an electric propulsion
device during an experimental testing campaign. The library is discussed and we also discuss
ongoing effort to offload some computations to an onboard FPGA.
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I1. Introduction

RDUINO is a family of popular consumer programmable microcontrollers that is routinely used in a variety of

hobbyist projects, from wearable technologies to robotics. A microcontroller is essentially a simple computer
built on a single board that consists of a central processing unit, dynamic and static rewritable memory, and various
input / output connections. The Arduino microcontrollers come in a variety of sizes and capabilities, as illustrated
by the photograph in Figure[I] The first pictured board is the legacy Arduino Uno. The second board is the 1 x 2 in
Arduino Nano 33 Sense BLE. This more recent board is not only smaller, but also includes a variety of integrated
sensors, including a magnetometer, accelerometer, gyroscope, microphone, and a light color detector, along with a
Bluetooth connectivity and a faster processor. The last board in the picture is the Arduino MKR Vidor 4000, which is
the board utilized in this paper. It does not contain any of the built-in sensors of the Nano Sense, but it contains an
onboard Field Programmable Gate Array (FPGA). FPGAs, as will be discussed further, are essentially programmable
CPUs that allow the user to create custom instructions by specifying the path of electrical signal through logical gates.
These microcontrollers run off a 5 V or a 3.3 V source, which can be provided by a battery or an USB connection.
They can also be integrated with external devices, including SD card writers, LCD screens, and other sensors. The
communication is accomplished using individual digital I/O pins, or I?C, micro HDMI, and mini PCI express connectors.
Sensors and other devices are typically shipped in the form of a breakout board with included circuitry for performing
the device-specific logic as well as an Arduino software library that handles the communication. Integrating the
device then simply involves electrically connecting pins from the sensor to specified pins on the Arduino board and
including the appropriate library in the control software. It should be noted that Arduino is just one of several families
of consumer microcontrollers. Alternatives include the Launchpad family from Texas Instruments, as well as various
Arduino-compatible boards from manufacturers such as Sparkfun or Adafruit.

The small footprint and power requirements, as well as the easy connectivity to external devices makes microcon-
trollers somewhat similar to single board computers such as the Raspberry Pi or NVIDIA Jetson. However, these latter
devices are essentially fully functional computers capable of running an operating system. It is very much feasible to
install Linux or a light version of Microsoft Windows onto a Raspberry Pi, and by connecting the device to a monitor
and a keyboard, one obtains a low cost desktop computer. The Arduino microcontrollers on the other hand do not offer a
capability to run an an operating system. Instead, they simply allow for the use to upload a custom code to be executed
continuously without requiring connectivity to a computer. As such, the Arduino is ideally suited for in-the-loop active
control of hardware devices, or for real-time evaluation of collected sensor data. In fact, we have utilized an Arduino in a
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Fig. 1 Photographs of three types of Arduino boards: Uno, Nano 33 BLE Sense, and MKR Vidor 4000 with a
credit card for scale

past work involving collecting environmental conditions in a gaseous purge characterization experiment[? ]. The use of
the Arduino eliminated the need for a large data acquisition board and a software license for the data collection software.

However, there are other possible uses for an Arduino beyond simple static monitoring of external sensors. It is
feasible to imagine a microcontroller receiving data from external sensors, while also running a numerical simulation of
the expected data. Any outlier information could then be transmitted to the user. This usage has great implications for
space probes given that many science missions are bandwidth limited and require the use of compression algorithms [?
]. In the field of spacecraft plasma propulsion, we can imagine a microcontroller using thruster operating data to tune
inputs for a reduced zero or one dimensional model of the device, and then performing exploratory studies of alternate
operating conditions to improve a property of interest. This could involve attempting to minimize discharge oscillations,
increase exit velocities, decrease plume divergence, or increase lifetime. While the Arduino computational performance
is not sufficient to simulate the device in real time, electric propulsion devices typically undergo week or month-long life
test studies during which the device operates at near steady state, with variation in performance on the scale of hours or
days. These time scales are sufficient for the microcontroller to establish a solution and drive the next operating set point.

For this reason, we have started the development of a plasma simulation library for the Arduino microcontrollers.
The objective of this effort is to simplify deployment of plasma and rarefied gas simulation codes to the Arduino. The
Arduino family was selected based on its large user base and an already existing ecosystem of peripheral devices. We
start by describing the Arduino programming model, the library, and then include several examples. The performance
of these codes is compared to a version running on a desktop workstation.

I11. Arduino Programming

Figure [2]illustrates the actual process of programming an Arduino board. The board simply needs to be connected
via a USB cable to a computer running an Arduino-provided integrated development environment (IDE). The IDE
contains an editor for writing the code. It also contains a “programmer” that compiles the code and flashes it to the
board over the USB connection. The IDE also contains additional useful tools such as a Serial Monitor for reading
and writing data sent over the USB connection acting as a serial port. One could alternatively utilize a command line
toolkit to perform the compilation and programming, and subsequently utilize custom program to perform the serial
communication. The serial connection is not required once the board is programmed, however, it is useful for debugging
and code monitoring. It is also how we obtain numerical results in this paper.

The Arduino is programmed in the C++ language. However, instead of implementing the main function, every
Arduino program needs to instead implement two functions called setup and 1oop. The former function specifies the
code that is executed whenever the board is powered up. The latter function specifies the code that subsequently runs
continuously. This is analogous to a desktop code containing

void main() {

setup ();

while (true) loop ();
1



Fig.2 Programming an Arduino is accomplished by connecting the board to a computer with a USB cable

The compiler automatically includes the Arduino.h header file. It defines functions for interfacing with the board.
They allow us toggling digital (1/0) pins between an input and output state, and writing or reading data from digital or
analog pins (analog pins are read only). Additional code can be included utilizing the standard #include command,
with the IDE automatically linking in the corresponding library source code or precompiled binaries. One example here
is the Serial.h library for performing communication over the serial port. Another library, Wire.h provides support
for sending data using the I?C protocol. This protocol uses two digital pins, labeled SDC and SDA, that act as a clock
and a data stream. This protocol is commonly used by external peripherals and sensor breakout boards.

IV. Debye Library

Arduino also supports third-party libraries. A large ecosystem of such libraries already exists, with the code typically
hosted on GitHub. Many of these libraries have been developed by the manufacturers of sensor breakout boards to
simplify communication with their product. In our case, we have started the development of an Arduino plasma
simulation library. The goal of this effort is to simplify the development of electric propulsion simulation codes running
on the Arduino platform. The library was named Debye, given that the Debye length is the smallest spatial scale at
which plasma exists, and microcontrollers are among the smallest physical devices on which a code can be run. The
library is available at .| The MKR Vidro 4000 board is used for testing. This board provides storage for up to 256 kB of
program and static data storage, and 32 kB for dynamic variables. Current capabilities include:

* 1D ES-PIC method

* Support for multiple particle species

* Support for ionization and MCC collisions

¢ Direct linear and Newton Raphson non-linear Poisson Solver

* FTCS Advection-Diffusion Eulerian material

* Serial port data output, with Python script for data plotting

V. Examples

A.Ion Gun

We now illustrate the use of the library with several examples. First, let’s consider a 1D simulation of a charged
particle accelerator, as may be the case in ion thruster optics or in a hollow cathode. In this simple example, we assume
that ions are born at the left boundary and are accelerated by an electric field established by a downstream electrode. We
have ¢(0) = 0 and ¢(L) = ¢,;gn:» where L is the domain length. Our goal is to compute the ion density within the
device. However, perhaps due to power supply limitations, or other feedback mechanisms, let’s assume that ¢,.;¢p; is
time varying, with the value provided by a probe output. In order to approximate this connection to a physical external
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Fig. 3 Electric setup for the first example. Input voltage is provided by pin 4. The current downstream of a
variable resistor is read out by analog pin 6.

envrionment, we connect the microcontroller to a variable resistor, as illustrated in Figure[3] Input voltage to the circuit
is provided by pin 4. The resistor is then connected in series. The output is connected to the Arduino analog pin 6. The
current flowing into this pin can be readout using Arduino’s analogRead function, which returns an integern value in
range [0 : 1023].

The ion flow can be simulated using the kinetic Particle in Cell (PIC) method. In the electrostatic implementation,
we use the Poisson’s equation

Vi = —p/e (1

to compute plasma potential ¢ given some charge density p, where the permittivity of free space € is a physical constant.
Plasma potential is related to the electric field E via

F=—vo @)

The electric field is subsequently used to advance ion velocities and positions by integrating the equations of motion
dv/dt = gE |m A3)
dx/dt =¥V “

through small Ar time steps. The force term in Equation [3]ignores the magnetic field term, which is not present in our
setup. A volumetric grid is used to compute p from individual particle positions.

Setting up this simulation with the Debye library is trivial. We begin by including the <Debye . h> header file and
instantiating a global Debye object. We then declare various simulation parameters. These include values for the domain
extents, x € [xg, X;;), the number of volume mesh nodes, and the Az simulation time step size. We also specify the
maximum number of simulation particles, and declare variables to hold the ion material index and the current time step.

#include <Debye.h>

Debye debye; // library instance

// declare simulation parameters

const float x0 = 0.0; // mesh origin

const float xm = 0.1; // mesh extend

const int ni = 51; // number of nodes

const float dx = (xm—x0)/(ni—1); // cell spacing

const float dt = 5e¢—38; // time step

const int max_p = 2000; // maximum number of simulation particles

// global variables
int mat_ions; // material index for ions
int ts = 0; // current time step



1. Setup function

We next populate the setup function that runs on the initial power up. It begins by establishing serial communication
to be used for a diagnostic output. In a production run in which the microcontroller is run independently of a computer,
this step would be omitted. We also use Arduino standard library functions to toggle the digital pin connected to an
onboard LED into the output (write) mode. Subsequently we use digitalWrite to set this pin to the low state to turn
off the LED. The LED will be turned on later on to indicate start up progress. We also use signal from analog pin 0 to
initialize the random number generator. This pin is not electrically connected and as such, will read out a random value.

// code to run on initial board power up

void setup () {
// enable serial port communication
Serial .begin(57600); // open serial port communication
while (! Serial) {}; // wait for the initialization to complete

pinMode (LED_BUILTIN, OUTPUT); // enable writing to the built in LED
digitalWrite (LED_BUILTIN,0); // turn off the LED

// initialize RNG
randomSeed (analogRead (0));

Subsequently, we use the createWorld1D function to initialize the computational domain. This function allocates
memory for a 1D Cartesian grid spanning the given extents, and containing the given number of computational nodes.
We then specify the left and right boundary conditions. In this case, both are set to a fixed (Dirichlet) potential. The
boundaries are initialized to ¢z. s, = 0 V and ¢, = =2 V.

debye.createWorld1D (x0,xm, ni );
debye .setLeftBoundary (DIRICHLET, 0);
debye.setRightBoundary (DIRICHLET, —2);

Next, we use the registerParticleMat member function to initialize a new material species that is represented
using simulation particles. The physical mass and charge of the physical ions is also specified. The final argument
specifies the maximum number of particles which controls the size of the allocated memory structure.

// register material species
mat_ions = debye.registerParticleMat(16%Const::AMU, 1% Const::QE,max_p);

We next make sure that the library initialization succeeded. The Debye class overrides the Boolean truth operator,
allowing us to check error status in a manner similar to other Arduino classes. We indicate success by blinking the
onboard LED 4 times. Otherwise, we “hang” the board by jumping into an infinite while(true) ... loop.

// make sure it all went well
if (debye) {
for (int i=0;i<4;i++) { // blink the LED 4x to update status
digitalWrite (LED_BUILTIN,1); delay(200);
digitalWrite (LED_BUILTIN,0); delay (200);
}

else {Serial.println("Error starting _up_Debye!");
while (true) {delay (1000); } // block execution
}

Finally, we active the external controller circuit by setting digital pin to the high state. This operation effectively creates
a 5V (on the MKR Vidor board) voltage drop across the external circuit.

// activate controller

pinMode (1, OUTPUT);

digitalWrite (1 ,HIGH);
}

2. Loop function
Next, we populate the 1loop function. We begin by reading a value from the analog pin 6. The integer value is
converted to a real number in range [—100, 100), which is used to update potential on the right boundary ¢,;gp:.

// code to run indefinitely
void loop () {



int val = analogRead (6);
float f = val/1023.0; // convert to [0:1)
debye.setRightBoundary (DIRICHLET, 100%(—1+42%f)); // set phi in [—100,100)

We then use loadParticles member function to inject 5 particles at random position x € [xg,xo + 5Ax). The
particles are born with zero drift and thermal velocity corresponding to 0.1 eV. Their macroparticle weight is set such
that these particles correspond to 1o number density, w,,,, = no (SAx - 1-1) /5.

// inject thermal ions in the first 5 cells
debye.loadParticles (mat_ions ,x0,x0+5%dx,nd0,0.1% Const::EvIoK,5);

Next we call the advance member function. This function implements the actual PIC algorithm. It uses particle
positions to compute charge density, uses it to compute plasma potential and the electric field, and finally integrates
particle velocities and position through the given time step.

debye.advance(dt); // computes electric field and advances particles

Finally, we increment a local variable ts that keeps track of the current time step. Every 25 steps, we call the
serialWrite function to output simulation data to the serial port. We also toggle the board built-in LED to provide
visual feedback to the user.

ts ++;
if (ts%25) {

debye.serialWrite ();
digitalWrite (LED_BUILTIN,! digitalRead (LED_BUILTIN ));

3. Diagnostic Output
The previously mentioned serialWrite function outputs information on the state of the simulation to the serial
port in the form of a comma-separated text line. The stream consists of the following entries:

ts,num_mats,np®,npl,...,np_(num_mats-1),ni,phi[0],phi[l],...,phi[ni-1],
mat[0].nd[0],...,mat[0].nd[ni-1],mat[1].nd[0],...,mat[num_mats-1].nd[ni-1]

Additional output can be achieved by modifying the source code in Debye. cpp or by implementing a custom function.
While the Arduino IDE offers a serial plotter, the plotter is limited to visualizing line plots with a single y-axis. We
instead use a Python script to read and plot the data. The script uses Python serial library to read data from the serial
port. It begins by searching for an available port,

for i in range(0,5):

try :
port_name = "/dev/ttyACM%d "%i
ser = serial.Serial (port_name ,57600)
print ("Opened, port,"+port_name)
port_ok = True
break

except serial.SerialException:
pass

Subsequently, we use matplotlib.animation.FuncAnimation to continuously call anim function, which begins
by reading a line from the serial port. This function blocks until the line available. The data read from the
Arduino is encoded as a string literal, and the second line strips out the relevant info. Alternatively, we could use
line.decode(’utf-8’).rstrip() to accomplish the same. Finally, the data is split by comma to obtain a list of
individual entries.
def anim(n):

line = str(ser.readline()); # read line from serial port

line = line[2:—5] #eliminate trailing b’ and \r\n

pieces = line.split(’,’); # split by comma

For brevity, the full source code of the plotting function is not included here, but is available in the Examples folder
provided with the Debye library. The data is however read out using syntax such as
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Fig. 4 Example of real-time feedback to user input

ts = int(pieces.pop(0))

for i in range(ni):
phil[i] = float(pieces.pop(0))

The collected values are used to update data within an imshow object to produce a waterfall time history plot, as
shown in Figured] The time increases from top to bottom. The top plot shows the plasma potential while the bottom
plot is the ion number density. As expected, by increasing the potential on the downstream electrode (indicated by
the red coloring), the ions are pushed away from this boundary due to a formation of a retarding electric field. This is
indicated by both the lack of ions away from the injection region (the blue coloring in the number density plot), and the
upstream migration of the high ion density region (the red region near the left boundary).

B. Plasma Sheath

The above example simulated only the ion population. We next demonstrate the use of the library to run a fully-kinetic
simulation of a plasma sheath. For this simulation we again consider a one-dimensional domain spanning x € [0,0.1)
m divided into 30 Cartesian cell. Potential on the left and right boundary is fixed to OV.

// declare simulation parameters

const float x0 = 0.0; // mesh origin

const float xm = 0.1; // mesh extend

const int ni = 31; // number of nodes

const float dx = xm/(ni—1); // cell spacing

const float dt = le—9; // time step

const float nd0 = lel2; // reference number density

const float phi0 = O; // reference potential

const float kTe0 = 1; // reference electron temperature

const int max_p = 1200; // maximum number of simulation particles

void setup () {

debye.createWorld1D (x0,xm, ni );
debye.setLeftBoundary (DIRICHLET, 0);
debye.setRightBoundary (DIRICHLET, 0);

We next use registerParticleMat to initialize material species corresponding to H* protons and e~ electrons. We
then use use loadParticles to load max_p randomly positioned particles of each species throughout the computational
domain.

// register material species



mat_ions
mat_eles

debye.registerParticleMat (1% Const::AMU, 1% Const ::QE, max_p);
debye.registerParticleMat (Const::ME —1xConst::QE, max_p);

debye.loadParticles (mat_ions ,x0,xm,nd0,0.1% Const::EvToK, max_p);
debye.loadParticles (mat_eles ,x0,xm,nd0, 1% Const:: EvIoK,max_p);

The loop function essentially consists of calling advance. Every 25 time steps we write out results to the serial
port using seriallirite.

void loop () {
debye.advance(dt); // computes electric field and advances particles

ts ++;
if (ts%25==0) {
debye.serialWrite ();

}
}

Figure [5| plasma potential, charge density, and ion and electron number densities after 422 and 6549 time steps
(these are arbitrary time points at which the screenshot was grabbed). In the former plot, we can observe an essentially
uniform ion density, while electrons show depletion (dark brown/gray color). The charge density also shows the net
positive charge (red coloring) in the charge density plot. At the later time step, ion depletion near the walls is now
apparent, and the electron population is decreased even further. However, charge imbalance in the near-wall sheath
is decreased, as expected. The oscillations in the plasma potential profile arise from the plasma attempting to retain
charge neutrality in the bulk region. The magnitude is related to numerical noise, which could be reduced by using
more simulation particles. However, the reduced available memory space on the Arduino does not allow us to use a
significantly larger number of particles.

Since Arduino is programmed essentially in C++, it is straightforward to migrate an Arduino code to a desktop. This
was done for this example, with the Debye library source files modified to remove calls to Arduino-specific functions
(such as for performing serial port communication or flashing the LED). This conversion allows us to compare the
performance of the Arduino to a typical computer run time. Using the MKR Vidor 4000 board, we can simulate 500
time steps with about 2000 total particles and 30 computational cells and data output once every 100 time steps, in 164
seconds (2 minutes, 44 seconds). The same configuration requires 0.0149 seconds on an Intel i5-8265 1.60 GHz CPU
laptop. The laptop timing includes a screen output at the same 100 time step frequency as the Arduino board. The
Arduino simulation thus runs 1100x slower than the desktop. While this may seem like a significant difference, not
even the laptop computer is capable of running at real-times.

VI. Future Work

A. Additional Material Types

While the basics of the library have been developed, much work remains to turn the library into a useful product.
Given the desired applicability to electric propulsion, our immediate goal is to develop additional material models to
simplify modeling of EP devices. As an example, we have developed a stand-alone 1D model of a Hall thruster based
on the thermalized model of Fife. This model is currently being ported to the Arduino. T

B. FPGA Interoperability

MKR Vidor 4000 selected due to the presence of an onboard Field Programmable Gate Array (FPGA) FPGA are
essentially a large array of logical electrical gates (multiplexers). As an example, an “AND” gate passes high signal if
both inputs are high. Programmable lookup table (LUT) elements specify the sequence of active gates. The primary
benefit of the FPGA is that essentially allows one to create custom “CPU” instructions by programatically setting the
path of electricity through the device. FPGA prices vary according to the number of logical elements, among other
things. The budget Intel Cyclone 10LP board included with the Arduino MKR Vidor board contains 15408 logical
elements. This is a sufficient count for creating a handful of custom instructions, especially if limited to elementary
fixed-point math. The use of floating point mathematics and trigonometric or exponential functions requires including
“intellectual property” (IP) blocks implementing these arithmetic operators. While implementation specific, in [? ] the
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Fig. 5 Plasma sheath simulation results after 422 and 6549 time steps




authors report 1907 logical elements required to implement a square root operator using an algorithm of Goldschmidt,
while 3150 LUTs are needed to implement an add or subtract operation on 64-bit floating point values. For a production
level FPGA, these LUT counts represent a minor fraction of the available resources, however, given the budget Intel
Cyclone 10LP board on the Arduino MKR Vidor with only 15408 gates, we need to be careful with the use of resources.

VII. Conclusion

We have developed and demonstrated a new method for modeling the dynamic evolution of surface in contact with
plasma based on coupling the PIC and DEM methods. The surface layer is represented by spherical elements interacting
with each other via spring forces, up to some maximum threshold. Ion collision with grain impart additional momentum
to the grains. This approach allows us to dynamically evolve the surface roughness and material compositions of a
surface layer at spatial and temporal scales greater than achievable with MD. We use the model, along with a simple
scheme for charge propagation, and a Maxwellian beam approximation of a cathode spot ion emission, to simulate the
dynamic evolution of conductivity across an insulator layer. We observe numerically, that similarly to what is seen in the
experiment, a conductive bridge forms that is speculated to have implications on the thruster life time. As part of future
work, we plan to develop a more physically sound model for the cathode spot, include chemical phase change to model
condensation, and include a Poisson solver to simulate electrostatic effects. Nevertheless, this combined PIC-DEM
approach appears to be an attractive scheme for modeling the near-surface plasma domain.

Appendix

The source code and animations videos are available at https://www.particleincell.com/2021/xx.
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