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I. Introduction 

Starfish is a two-dimensional XY/RZ plasma and gas simulation code written in Java [1]. The code was developed with 
generality in mind, allowing it to consider a wide range of gas dynamics problems. The current version mainly implements 
functionality needed for simulations of low-density plasmas using the Particle In Cell Method (PIC) with MCC/DSMC 
collisions. Rudimentary support for fluid modeling is also implemented and we are working on extending this functionality 
as soon as possible. Starfish operates on structured 2D Cartesian or body fitted stretched meshes. Surface geometry is 
included via linear or cubic splines. The code is easily extensible using plugins, as described later in this document. 
 
Starfish consists of two version. The Light Edition (Starfish-LE) is the main code described in this document. It implements 
numerical models needed to perform simple gas kinetics simulations. The binary and source code for this version can be 
downloaded by visiting https://www.particleincell.com/starfish. The full version (Starfish-Full) implements various 
proprietary models mainly for modeling ion sources and surface interactions. The full version is not publicly available.  
 

I.a) License 
Please review LICENSE included with the code. Your use of the code implies consent to the license agreement. In general, 
you are allowed to use the code for any non-commercial purpose assuming the original copyright notice is preserved.  
 

I.b) Getting Started 
Although we started working on the GUI, a working version of GUI is not yet available. For now, Starfish is run from the 
command line. You need to have a Java Run Time1 environment installed on your system. To use the code, navigate to the 
directory containing the simulation input files. To run the code, type 
java -jre <path_to_starfish-LE.jar> 
For instance, if your starfish-LE.jar file is located in a folder “codes/starfish-LE” in your home directory, and if the case you 
wanted to run was located in a subfolder “dat/tutorial/step1”, you would do the following: 
> cd starfish-LE 
> cd dat/tutorial/step1 
> java -jar ../../../starfish-LE.jar 
 

  

Figure 1. Starfish running on Microsoft Windows in Windows PowerShell (left) and Cygwin (right) 

                                                           
1 Java JRE can be downloaded from https://java.com/en/download/ 

https://www.particleincell.com/starfish
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Figure 1 shows Starfish running on Microsoft Windows with the Windows Powershell (an update to the command promp) 
and the Linux emulator Cygwin. Note, we do not recommend running large Starfish cases from within Cygwin. At least as 
of this writing, Cygwin does not expose all CPU cores to the running processes and thus running Starfish from within 
Cygwin will result in the code running in serial. 
 

I.c) Input File Structure  
When Starfish launches, it looks for a file called starfish.xml located in the current directory. This is an XML file containing 
multiple tags in the format 
<simulation> 
<tag>...</tag> 
<tag>...</tag> 
</simulation> 
 
Any text enclosed with <!-- and --> is considered a comment. For instance: 
<!-- this is a comment --> 
<tag> ... </tag> 
 
Each “tag” corresponds to a Starfish command. The full listing of available commands is given in Section VI.  
 

II. Numerical Model 

Starfish is based on the concept that in gas simulations, we are interested in simulating the evolution of density, velocity, 
and temperature of one or more gaseous materials. In general, any time dependent gas simulation can be reduced to 
the following pseudo code: 
 
for (it in num_time_steps): 

    for (material in list_of_materials): 

        material.integrateByDt() 

 

The “integrateByDt()” function simply advances the material bulk properties in time by a simulation time step Δ𝑡. What 
this function actually does is specific on the type of material and the type of simulation we are interest in running. For 
instance, for low density plasmas, this step may involve advancing simulation macroparticles by Δ𝑡 using the Particle In 
Cell (PIC) method [2]. For dense neutral gases, a Navier-Stokes solver may be used instead. The Starfish-LE version 
implements the PIC method as well as a rudimentary advection-diffusion solver. Additional material types may be added 
in the future. In the PIC method, the gas is represented by a number of simulation macroparticles. Each macroparticle 
corresponds to some 𝑤𝑠𝑝 number of real molecules, ions, or electrons. This approach is needed, since it is not 

computationally feasible to track every single real molecule outside some limiting low-density, tiny domain cases. Despite 
Starfish being a 2D code, each particle retains three components of position and velocity. The out-of-plane position is used 
to rotate the particle back to the computational slice in axisymmetric simulations. Particle positions in the simulation plane 
are then used to compute number density of material “i” 𝑛𝑖 by scattering particle positions to a computational grid. In 

case of charged simulations, we next compute charge density 𝜌 = ∑ 𝑛𝑖
𝑚𝑎𝑡𝑠
𝑖 . Poisson’s equation, 𝜖0∇

2𝜙 = −𝜌 is then used 

to obtain plasma potential, which is in turn used to compute the electric field, 𝐸⃗ = −∇𝜙. Particle velocities are updated 

from Lorentz force, 𝐹 = 𝑞(𝐸⃗ + 𝑣 × 𝐵⃗ ). Starfish uses the Leapfrog integrator with the Boris scheme used for the velocity 
update. 
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III. Examples 

III.a) Flow of plasma past a charged cylinder 
We demonstrate the use of Starfish by summarizing a tutorial that was previously posted to the PIC-C blog2. In this 
simulation we will investigate the flow of plasma over an infinitely long charged cylinder.  

Step 1: Computational Domain and Initial Field 

We start the tutorial by specifying the computational domain, loading the problem geometry, solving plasma potential, 
and outputting results. No particles are introduced yet. The output that we will generate is shown in Figure 2. 

 

Figure 2. The initial plasma potential on a 2D mesh and as a slice along Y=0. 

As noted earlier, Starfish looks for a file named starfish.xml located in the current directory. This file contains all the 
commands that drive the simulation. The file used to produce the above output is shown below: 
 
<simulation>     

 

<note>Starfish Tutorial: Part 1</note> 

 

<!-- load input files --> 

<load>domain.xml</load> 

<load>materials.xml</load> 

<load>boundaries.xml</load> 

   

<!-- set potential solver --> 

<solver type="poisson"> 

<n0>1e12</n0> 

<Te0>1.5</Te0> 

<phi0>0</phi0> 

<max_it>1e4</max_it> 

</solver> 

 

<!-- set time parameters --> 

<time> 

<num_it>1</num_it> 

<dt>1e-6</dt> 

                                                           
2 https://www.particleincell.com/2012/starfish-tutorial-part1/ 
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</time>  

 

<!-- run simulation --> 

<starfish /> 

        

<!-- save results --> 

<output type="2D" file_name="field.dat" format="tecplot"> 

<scalars>phi, efi, efj, rho, nd.O+</scalars> 

</output> 

 

<output type="1D" file_name="profile.dat" format="tecplot"> 

<mesh>mesh1</mesh> 

<index>J=0</index> 

<scalars>phi, efi, efj, rho, nd.o+</scalars> 

</output> 

 

<output type="boundaries" file_name="boundaries.dat" format="tecplot" /> 

 

</simulation> 

 
As you can see, this file is an XML document and it contains a number of elements nested within the parent <simulation> 
element. We will now review these commands in detail 
 
Line 2: <note> 
 
The input file starts with the note command, which simply outputs the specified message to the screen and the log file. 
This is a convenient way to remind you what simulation case the code is running. 
 
Lines 5-7: <load> 
 
The file next contains three load commands. These commands load the specified file and place it into the XML tree at the 
current position. They are used to split a single input file into more manageable smaller chunks. This command is 
particularly handy for data reuse, for instance, to reuse commonly used material definitions and material interaction 
tables. We will go through the content of these in more detail below. 
 
Lines 10-15: <solver> 
 
Lines 10 through 15 contain the solver command. This command is used to specify the details of the solver that will be 
used in the simulation. Here we use the non-linear Poisson solver. The parameters specify the reference values for the 
Boltzmann electron model, as well as the maximum number of iterations for the linear solver. Other parameters can also 
be set, such as the tolerance, and the settings for the non-linear NR solver, but here we just use the defaults. You can see 
the value of these by looking in the log file. 
 
Lines 18-21: <time> 
 
We next set time control parameters. We tell the code to run for a total of zero iterations. We also specify the time step 
size, which in this case is ignored. Running for zero iterations instructs the code to solve the initial field, but it will not 
attempt to inject particles (assuming sources were defined). 
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Line 24: <starfish> 
On line 24 we finally start the simulation with the starfish command. All commands before this one were simply specifying 
the inputs, now these are used to compute the solution. The input file parser will wait for the solver to finish before 
moving to the next command. 
 
Lines 27-37: <output> 
By itself, the starfish command does not produce any useful output. The computed results are stored internally in memory 
and must be saved to the output file for post-processing. This is done with the output command. Three types of output 
are supported: 2D, 1D, and Boundaries. The first saves data on the 2D computational mesh. The 1D type is similar but it 
saves only a subset of the mesh, one with a fixed I or J coordinate. The Boundaries output saves data along the simulation 
geometry. This plot is useful for outputting surface-type parameters such as erosion rate or surface flux. Here we use it to 
simply save the loaded object geometry. 
 
Domain File (domain.xml) 
We now return to line 5, and consider the domain specification. The domain file, domain.xml, contains the following: 
 
<domain type="xy"> 

  

<mesh type="uniform" name="mesh1"> 

<origin>-0.15,0</origin> 

<spacing>5e-3, 5e-3</spacing> 

<nodes>70, 40</nodes> 

<mesh-bc wall="left" type="dirichlet" value="0" /> 

<mesh-bc wall="bottom" type="symmetry"/> 

</mesh> 

  

</domain> 

 
One of the unique features of Starfish is its ability to load an arbitrary number of computational meshes (note this 
functionality is broken in 0.18 but is being worked on). These meshes can be either rectilinear or body fitted elliptic 
meshes. In this example, we specify just a single rectilinear mesh. We first tell the code that our geometry is in the 
Cartesian (XY) coordinate system. Starfish also supports axisymmetric (RZ) domains. The uniform Cartesian mesh is 
specified by providing the location of the origin, node spacing, and the number of nodes in the two coordinate directions. 
We also apply a mesh boundary condition by setting the left wall to a fixed 0V potential. This is needed in order to create 
a potential gradient between the ambient free space and the sphere. We also let the bottom face be symmetric since we 
are simulating only one half of the computational domain. 
 
Materials definition (materials.xml) 
Starfish does not contain any build database of materials or material interactions. This information must be provided by 
the user. Since we don’t have any particles in this first step, we don’t yet concern ourselves with the interactions, however, 
we need to define the materials that will be present in the simulation. The materials file contains the following: 
 
<!-- materials file --> 

<materials> 

  

<material name="O+" type="kinetic"> 

<molwt>16</molwt> 

<charge>1</charge> 

<spwt>5e9</spwt> 

<init>nd_back=1e4</init> 

</material> 
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<material name="SS" type="solid"> 

<molwt>52.3</molwt>  

</material> 

  

</materials> 

 
As you can see, we defined two materials: atomic oxygen ions and stainless steel. The atomic oxygen ions are kinetic. This 
material will be modeled with simulation particles within the particle in cell method. Starfish also supports fluid materials, 
which use Navier Stokes or MHD equations to propagate densities, as well as solid materials, which don’t change 
throughout the simulation. The parameters needed to specify a material will depend greatly on its type. For the kinetic 
oxygen ions, we specify the particle specific weight, the number of real particles each simulation macroparticle represents. 
This number will influence the number of simulation particles in the simulation. We also specify the background density. 
A non-zero background density is required whenever the Boltzmann electron model is used due to the presence of the 
logarithmic term. 
 
Geometry file (boundaries.xml) 
The final piece is the geometry file boundaries.xml, which is listed below: 
 
<boundaries> 

 

<boundary name="cylinder" type="solid" value="-100" reverse="false"> 

<material>SS</material> 

<path>M 0.05, 0 L 0.0475528, -0.0154508 0.0404508, -0.0293893 0.0293893, -0.0404508 

0.0154508, -0.0475528 -9.18E-18, -0.05 -0.0154508, -0.0475528 -0.0293893, -0.0404508 -

0.0404508, -0.0293893 -0.0475528, -0.0154508 -0.05, 6.12E-18 -0.0475528, 0.0154508 -

0.0404508, 0.0293893 -0.0293893, 0.0404508 -0.0154508, 0.0475528 3.06E-18, 0.05 

0.0154508, 0.0475528 0.0293893, 0.0404508 0.0404508, 0.0293893 0.0475528, 0.0154508 

0.05, 0</path> 

</boundary> 

 

</boundaries> 

 
Currently, simulation objects are specified via linear or cubic Bezier splines. It is possible that a future version of the code 
will include elementary building-block shapes and support for other file formats. The boundary contains a child field called 
path which provides the geometrical information about the spline. The syntax is similar to the SVG format, with the 
exception that cubic splines are specified by simply listing the points through which the spline will pass and the control 
knot points are omitted. Here we use linear components (L) to trace a circle. The ordering of the nodes matters, since the 
code will use the ordering to figure out which side of the segment is “internal” to the object. The internal side is assumed 
to lie on the “left”, hence the circle segments move counter-clockwise. This path was created with the included 
MakeCircle.java program. 
 
Mesh Generation 
Finally, a quick note about mesh generation. Right now, Starfish supports just the “staircase” or “sugarcube” method. The 
code simply uses the provided surface boundary to figure out which mesh nodes are internal, and these nodes are given 
the boundary condition of the surface spline. A more detailed method of using cut cells is still in development. You can 
see in Figure 3 below the staircasing effect. This plot is generated by visualizing the “type” data field. The nodes in red as 
flagged as internal  and the ones in blue comprise the gas domain. It is important to check that node location was set 
correctly before launching the simulation. 



Particle In Cell Consulting LLC Starfish User’s Guide 

 

 

  10 

 
 

 

Figure 3. Internal nodes (in red) set with the sugarcubing algorithm 

Step 2: Particles and Animation 

We now add particles to our simulation. In order to add particles, we need to specify sources. Starfish supports two types 
of sources: volume and surface. Here we will use the latter. Surface sources create particles along geometry (boundary) 
splines according to a prescribed velocity distribution function (VDF) and the surface normal vector. In this example, we 
want the entire left domain boundary to act as a source injecting particles with uniform velocity. This setup then 
approximates the movement of the cylinder through undisturbed plasma, with the frame of reference moving with the 
cylinder. First, we need to add a new boundary to the boundaries.xml file:  
 
<boundaries> 

 

<boundary name="cylinder" type="solid" value="-1" reverse="false"> 

<material>SS</material> 

<path>...</path> 

</path> 

</boundary> 

 

<boundary name="inlet" type="virtual" > 

<path>M -0.15,0.2 L -0.15, 0</path> 

</boundary> 

 

</boundaries> 

 
We named this spline “inlet” and it was given a type of virtual. This classification means that the boundary will not be used 
in generating the mesh intersections nor will it be seen by the particles. It is available for use by sources and also by probes 
(but more about probes later). This spline is simply a linear segment from the bottom left to the top left corner of the 
computation mesh. As you can see, it is 0.2m long. 
 
To add the source, we add the following command to starfish.xml (this command could also be placed in an external file 
and loaded with the <load> command): 
 
<!-- set sources --> 

<sources> 

<boundary_source name="space"> 

<type>uniform</type> 

<material>O+</material> 

<boundary>inlet</boundary> 

<mdot>5.313e-11</mdot> 
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<v_drift>10000</v_drift> 

</boundary_source> 

</sources> 

 
Here you can see how the boundary comes into play. The source is given type uniform, which means that it produces 
particles with velocity equal to v_drift. The particles will be moving in the direction of the surface normal of the associated 
boundary, the inlet. If the boundary consisted of a number of individual splines, the particles would be moving according 
to the local normal. This source will generate O+ particles at mass flow rate of 5.313e-11 kg/s. You may be wondering how 
this number was determined. We want our plasma density in the free space to be 1012 m-3 to correspond with the 
potential solver electron model settings. The mass flow rate is given by the following expression: 

𝑚̇ = 𝑚𝑛𝑢𝐴 
where the terms on the RHS correspond to the atomic mass (16 amu, per materials.xml file), number density (1e12 m-3), 
velocity (10,000 m/s), and source area (0.2 m2). In the Cartesian (XY) mode, the area is equal to the spline length, since 
unit depth is assumed. This expression gives us the value that is used in the simulation. Also, since we now have particles, 
we need to run for enough time steps to reach the steady state. In this case, 400 time steps will do the trick. We modify 
the time command as follows: 
 
<!-- set time parameters --> 

<time> 

<num_it>400</num_it> 

<dt>2e-7</dt> 

</time>  

 
After you run the simulation, we obtain results like those visualized in Figure 4 and Figure 5 . We can see that a wake forms 
behind the cylinder. We can also clearly see the “reflection” of ions at the centerline, the line of symmetry. In reality, this 
reflection corresponds to the influx of particles from the opposite half of the simulation. This is best seen in the plot of 
the vertical velocity. 

 

 

Figure 4. Ion density and ion vertical velocity 
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Figure 5. Plasma potential for flow over a cylinder 

These results show the final solution at the end of the simulation. These results correspond to the instantaneous steady 
state results. But what if we wanted to learn more about how the solution progressed? Or what if we had a time-
dependent injection source? This is where animations come in. Animations direct the simulation to save results at a 
prescribed frequency during the course of the computation. Animations are specified by wrapping the standard output 
command in an animation command. See the website for a visualization of this data. 
 
<!-- save animation --> 

<animation start_it="1" frequency="20"> 

<output type="2D" file_name="field_ani.dat" format="tecplot">  

<scalars>phi,rho, nd.O+,u.O+,v.O+</scalars> 

</output> 

</animation>  

Step 3: Surface Interactions  

In the previous step, ions that collided with the cylinder were simply removed from the simulation. This is the default 
surface interaction that occurs if no other model is defined. It is only partially realistic. In reality, when low energy ions 
collide with a surface, they tend to pick up an electron from the surface and recombine into a neutral. In many plasma 
processes, surface recombination is the dominant plasma loss mechanism. Recombination in the gas itself is a three body 
process that is negligible at densities below 1e19 m-3. Although significantly lower than atmospheric pressure, this density 
is still several orders of magnitude higher than densities present in common space plasma applications. For instance, the 
ambient plasma density at the Low Earth Orbit is around 1e12 m-3. So while it is true that an ion “disappears” from the 
simulation on surface impact, the prior simulation does not conserve mass since the reflected neutral is not added. 
 
We now add surface recombination to our model. This is done via Starfish’s interactions module. This module handles 
interactions between all materials, either kinetic (handled by the PIC method), fluid (handled by the CFD/MHD solvers), 
or solid (making up the surfaces). We first create a new text file in the simulation directory called interactions.xml. 
The content of this file is 
 
<!-- material interactions file --> 

<material_interactions> 

  

<surface_hit source="O+" target="SS"> 

<product>O</product> 

<model>cosine</model> 

<c_accom>0.5</c_accom> 

<c_rest>0.9</c_rest> 

</surface_hit> 

  

</material_interactions> 
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and we load this file by adding 
 
<load>interactions.xml</load> 

 
to starfish.xml. We also need to add a new material to the database – remember, Starfish does not contain any built-in 
materials. We add the following to materials.xml: 
 
<material name="O" type="kinetic"> 

<molwt>16</molwt> 

<charge>0</charge> 

<spwt>2e5</spwt> 

</material> 

 
Each material interaction involves at least three participants: source, target, and product. The distinction between sources 
and products becomes blurry when dealing with collisions. However, they are clearly distinct when dealing with surface 
interactions. In this case, the source is the “flying” component. The target is the material that the source hits – the material 
from which the surface is made of. The product is the material the source turns into after undergoing the impact. In this 
case, we have told the code to turn O+ ions into O atoms after colliding with Stainless Steel surfaces. 
 
When you look in the materials file, you will see that the specific weight of the oxygen atoms (O), 2e5, differs from the 
specific weight of the oxygen ions (O+), 5e5. The code takes this into account, and creates, on average, 2.5 atom particles 
per each impacting ion. You can test this out yourself by changing the value and seeing the number of particles change. 
The actual density of oxygen atoms will however stay the same, but the data will become noisier as the number of particles 
is reduced. This can be seen below in Figure 1. 

  

Figure 6. Density of neutrals from surface recombination of impacting ions. Images compare the effect of specific weight on results: 
2e5 (left), and 2e7 (right). Instantaneous results. 

Material Interaction Model 
So far we have only told the code to turn O+ into O. However, we have yet to specify how the new particles will leave the 
surface. This is done via the model field. Even relatively smooth surface will contain irregularities on the atomic scale. 
Furthermore, in many cases, incoming molecules do not bounce off the surface like a tennis ball. Instead, they 
momentarily settle on the surface and then they are re-emitted in a direction that tends to follow Lambert’s cosine law. 
The cosine model models this behavior. The angle of the emitted particle will scale proportionally to the cosine of angle 
between the velocity vector and the surface normal. Some additional models that are available include specular and 
diffuse (random) reflection. The 𝑐𝑟𝑒𝑠𝑡  and 𝑐𝑎𝑐𝑐𝑜𝑚 fields control the post impact velocity. The coefficient of restitution, 
𝑐𝑟𝑒𝑠𝑡 = 𝑣2/𝑣1 is primarily applicable to finite-sized dust particles and for molecular simulations we will usually keep it at 
1. The coefficient of thermal accommodation specifies the fraction of incoming particles that will completely forget their 
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incoming velocity and will instead come off with a velocity corresponding to the thermal velocity of the surface. The overall 
algorithm is as follows: 
 
v2 = v1*c_rest         /*post impact velocity*/ 

R = random();          /*pick a random number in [0,1)*/ 

if (R<c_accom) 

   v2 = v_th*sampleMaxwellian(); 

 

/*create particle with velocity magnitude v2*/ 

 
Complex Interaction Types 
In the above example, all incoming ions turned into neutrals and were re-emitted. However, what if we wanted to model 
a situation where a fraction of particles stick to the surface, another fraction is reflected specularly, and only the final 
fraction is emitted according to the cosine law? This is quite easy in Starfish. Starfish allows you to define multiple 
interaction types with a prescribed probability of occurrence. As an example, let’s consider a more complex 
interactions file: 
 
<!-- material interactions file --> 

<material_interactions> 

 

<surface_hit source="O+" target="SS"> 

<product>O</product> 

<model>cosine</model> 

<prob>0.4</prob> 

<c_accom>0.5</c_accom> 

<c_rest>0.9</c_rest> 

</surface_hit> 

 

<surface_hit source="O+" target="SS"> 

<product>O</product> 

<model>specular</model> 

<prob>0.2</prob> 

<c_accom>0</c_accom> 

<c_rest>1.0</c_rest> 

</surface_hit> 

 

</material_interactions> 

 
We have now specified two surface_hit fields. In addition, we added a new field called prob. This field gives the probability 
for each model. As you can see, these two probabilities add up to a value less than 1.0. This is OK, the remaining particles 
will be handled by default handler, one that absorbs incoming particles.  
 

Step 4: Steady State, Surface Flux, and Data Averaging 

We next  learn how to export surface properties, such as surface flux and deposition rate. We will also set up averaging to 
obtain averaged field properties. In the previous step, we added surface recombination of ions into neutrals. The more 
complex surface model had a fraction of ions stick to the cylinder. Now let’s assume that we want to determine the rate 
with which ions are arriving at the object, and also how much stuff is sticking to it. These are just two examples of surface 
(boundary) properties that can be exported from the simulation.  
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But before we start discussing surface flux, we need to introduce the concept of steady state. Many computer simulation 
methods, especially ones based on kinetic approaches, such as PIC and DSMC, work by integrating simulation particles 
forward in time from some known initial state. The simulation will initially pass through a transient state in which the 
results are constantly changing and are not indicative of the final steady solution. As such, we need to wait until steady 
state to start collection cumulative data. Starfish automatically waits until steady state before starting to collect properties 
such as surface flux. This is an important point to note if you want to export cumulative data. By default, the steady state 
is determined automatically. But you can also override it. As an example, here is a time command which instructs the code 
to assume that steady state is reached at time step 100. 
 
<time> 

<num_it>500</num_it> 

<dt>5e-7</dt> 

<steady_state>100</steady_state> 

</time> 

 
One thing that occurs once steady state is reached is that the code will start collecting information about particles hitting 
surfaces. This includes properties such as flux of individual materials, as well as the mass deposition rate, corresponding 
to the particles that stick (are absorbed) to the surface. We can output these properties by adding list of variables to the 
output statement. The result is shown in Figure 7. 
 
<output type="boundaries" file_name="boundaries.dat" format="tecplot"> 

<scalars>flux.o+, flux-normal.o+, depflux.o+, flux, deprate, depflux</scalars> 

</output> 

 

 

Figure 7. Surface flux saved as surface (boundary) data. 

Data Averaging 
Since results from kinetic codes are quite noisy, it is a good practice to average results over several time steps to get both 
smoother plots, and to eliminate outlier data arising from statistical noise. This is done in Starfish with the averaging 
command. The syntax is 
 
<!-- setup averaging --> 

<averaging frequency="2"> 

<variables>phi, nd.o+, nd.o</variables> 
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</averaging> 

 
The averaging starts automatically at steady state, and new data will be added every 2 time steps. The variables lines lists 
the variables to be averaged. Since averaging data adds a computational overhead, the code averages just the variables 
that are specified here. These averaged values are then exported using the standard output command, with the caveat 
that the averaged versions will have the base ending in “-ave”. For instance, 
 
<!-- save results --> 

<output type="2D" file_name="field.dat" format="tecplot"> 

<scalars>phi, phi-ave, rho, nd.o+, nd-ave.o+, u.o+, v.o+, nd.o, nd-ave.o, u.o, 

v.o</scalars> 

</output> 

 
This command will output to a file named “field.dat” the following variables: instantaneous potential, averaged potential, 
instantaneous ion density, averaged ion density, instantaneous neutral density, and averaged neutral density. Figure 8 
below shows the differences. 

 

Figure 8. Comparison of instantaneous (left) and averaged (right) neutral densities. 

Step 5: MCC Collisions and Chemical Reactions 

While previously we discussed the gas/surface interface, we have not yet considered gas interactions. The neutrals and 
ions currently pass right through without “seeing” each other. Starfish supports three types of material interactions: 
chemical reactions, MCC, and DSMC. The easiest way to differentiate between these is to think of them as fluid-fluid, 
particle-fluid, and particle-particle events, respectively. Chemical reactions operate solely with the density and 
temperature fields and are applicable to models described by a rate equation. They are useful for modeling production or 
destruction of material in processes such as ionization or recombination. 
 
MCC, or Monte Carlo Collisions, are kinetic-fluid interactions. The source material collides with a target cloud. The number 
density of the target at the particle position is used to determine the collision probability. If the collision occurs, only the 
source particle is modified. The target is not affected by the collision. As such, momentum is not conserved. MCC is suitable 
for cases when the target material is sufficiently more dense than the source, such as when a rarefied ion beam interacts 
with a dense neutral cloud via the Charge Exchange (CEX) collision. Finally, DSMC (Direct Simulation Monte Carlo) is a 
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kinetic-kinetic collision process. This method collides particles with other particles in the simulation cell. Both energy and 
momentum are conserved. This method is suitable for modeling collisions in like gases, such as to model momentum 
exchange (MEX) collisions in the ion gas. Starfish implements the No Time Counter (NTC) method of Bird [3]. DSMC is the 
most computationally demanding of these three methods. Material interactions are specified in the interactions file which 
you have already seen before. We used this file previously to add surface recombination. We modify the interactions file 
as follows: 
 
<material_interactions> 

... 

<!-- 

<chemistry model="ionization"> 

<sources>O,e-</sources> 

<products>iO+,2*e-</products> 

</chemistry>  --> 

 

<mcc model="cex"> 

<source>O+</source> 

<target>O</target> 

<sigma>inv</sigma> 

<sigma_coeffs>1e-16</sigma_coeffs> 

</mcc> 

 

</material_interactions> 

 
The chemistry interaction listed here within a comment illustrates how we go about modeling the ionization reaction 

𝑂 + 𝑒− → 𝑂+ + 2𝑒− 
We can write this process as follows: 

𝑑𝑛𝑂+ = +𝑘𝑛𝑂𝑛𝑒−𝑑𝑡 
𝑑𝑛𝑂 = −𝑘𝑛𝑂+𝑛𝑒−𝑑𝑡 

ignoring electron density change. Here “k” is the ionization rate (which is typically function of the electron temperature) 
and the two “n” correspond to the densities of the atoms and electrons. An example of this interaction is shown in Figure 
9. We see that ions are created only in the region containing a neutral population. Additional details about the chemistry 
model are available online3. 

 

Figure 9. Ions created by the ionization chemistry interaction 

                                                           
3 https://www.particleincell.com/2012/starfish-tutorial-part5/ 
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MCC 
Let’s now move onto MCC. Just as in the case of the chemical reaction, we specify the source and target, as well as the 
collision model. In this case, we’ll be using the CEX handler. This handler models the electron exchange between a fast ion 
and a slow neutral resulting in a fast neutral and a slow ion, 

𝑂𝑓𝑎𝑠𝑡
+ + 𝑂𝑠𝑙𝑜𝑤 → 𝑂𝑓𝑎𝑠𝑡 + 𝑂𝑠𝑙𝑜𝑤

+  

 
But since this is MCC, we don’t actually modify the neutrals. Instead, the neutrals are used to compute the collision 
probability following 𝑃 = 1 − exp(−𝑛𝑛𝑔𝜎𝛥𝑡), where 𝑛𝑛 is the neutral density, 𝑔 is the relative velocity between the ion 
and the neutral (with the neutral assumed to be stationary), and 𝜎 is the collision cross-section. The sigma model is 
typically a function of relative velocity, with a number of models existing to describe different collision events. A classic 
model for modeling CEX is the model of Rapp and Francis. However here, for simplicity, we use a constant cross-section. 
But even with this relatively large value, collisions are still going to be a very rare event due to the low gas densities. So 
just to demonstrate this effect, let’s go ahead and specify a dense background neutral environment. In the materials 
file, let’s modify the oxygen atom by adding an init tag, 
<material name="O" type="kinetic"> 

<molwt>16</molwt> 

<charge>0</charge> 

<spwt>2e5</spwt> 

<init>nd_back=2e18</init> 

</material> 

 
This background density will be added to any density from the actual kinetic particles. We can also turn off the potential 
solver. One way is to replace the Poisson solver with a constant electric field model with zero components, 
<!-- set zero electric field --> 

<solver type="constant-ef"> 

<comps>0,0</comps> 

</solver> 

 
This will allow us to see the effect of collisions. The source loads a cold ion beam, and hence, in the absence of forces and 
collisions, the ions should continue moving in a straight line. Collisions will scatter the motion. You can see this comparison 
for yourself below in Figure 10. You can see that once the collisions are enabled, we both start seeing diffusion of ions into 
the wake behind the cylinder, and also the overall density of ions increases. This is due to the presence of many slow ions 
that are taking a long time to leave the simulation. 

 

Figure 10.  Ion density without (left) and with (right) CEX collisions enabled 
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III.b) Supersonic expansion of atmospheric gas to vacuum 
We now consider a different example motivated by a paper of Jugroot [4]. The authors were interested in simulating 
nitrogen gas expanding from a 750 Torr (basically atmospheric) environment to a 0.5 Torr tank through a 0.75mm diameter 
orifice. This is an axisymmetric problem. With the orifice exit plane centered at (0,0), their simulation domain extended 
to 25 mm in the axial direction and 11 mm in the radial direction. They didn’t specify what kind of mesh was used but 
listed the typical number of cells as 50,000. We set up the problem with a uniform Cartesian mesh with 1e-4 node spacing 
and 27,500 cells in the low pressure region. To keep the orifice boundary aligned with a mesh edge, the orifice diameter 
was increased slightly to 0.8mm.  

 

Figure 11. Simulation setup for the supersonic jet expansion example. 

The setup for this problem is visualized in Figure 1 above. We will use ambient sources to maintain constant pressure 
along the red and orange boundaries. This source simply creates particles while pressure in the neighboring cell is below 
some user given threshold. Particles are sampled as thermal gas but can be given optional drift velocity. Besides 
maintaining pressure, the source can also maintain density. These two properties are related by the ideal gas law, . The 
black boundary is a solid wall diffusely reflecting incident molecules. Temperature of this wall will be set to the same 
temperature as the injected gas. Figure 1 shows results after 200 time steps. As you can see, we start with an initially 
empty domain. I experimented with prefilling the low density region with the 0.5 Torr gas but found it to make no 
difference. 

Input Files 

We will now go through the input files needed by the simulation. You will find them in the tutorial/dsmc/jet 
directory. We start with the main starfish.xml file. As you can see, it’s quite short. We tell the simulation to run for 
70,000 time steps, with steady state forced at time step 20,000. This controls when averaging begins. The automatic steady 
state checking code is not robust, and I wanted to make sure we are truly at steady state when we start collecting data. I 
also included optional restart code. One other thing you may note is a lack of code specifying averaging. As of v0.16, 
velocities, density, and temperature are automatically averaged for kinetic species. 
 
<simulation>     

<note>DSMC gas expansion</note> 

<log level="Log" /> 

  

<!-- load input files --> 

<load>domain.xml</load> 

<load>materials.xml</load> 

<load>boundaries.xml</load> 
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<load>interactions.xml</load> 

<load>sources.xml</load> 

  

<!-- set time parameters --> 

<time> 

<num_it>70000</num_it> 

<dt>1e-8</dt> 

<steady_state>20000</steady_state> 

</time>  

   

<!-- run simulation --> 

<starfish/> 

  

<!-- save results --> 

<output type="2D" file_name="field.vts" format="vtk"> 

<scalars>nodevol, p, nd-ave.n2, t.n2, t1.n2, t2.n2, t3.n2,  nu, mpc.n2, dsmc-

count</scalars> 

<vectors>u-ave.n2, v-ave.n2, w-ave.n2</vectors> 

</output> 

 

<output type="boundaries" file_name="boundaries.vtp" format="vtk"> 

<scalars>flux.n2, flux-normal.n2</scalars> 

</output> 

  

</simulation> 

 

 
The variables that we are outputting include node volume, total pressure, average number density of nitrogen, total 
temperature, temperature components for the three spatial directions, average velocity components, collision rate, 
average number of macroparticles per cell, and average number of collisions per cell. All this data is saved as point data. 
In the future, I will make the output algorithm more user friendly by having it save velocity components directly as 
vectors.  
 
The domain.xml file specifies the uniform mesh used for particle push, collisions, and sampling: 
<domain type="zr"> 

<mesh type="uniform" name="mesh"> 

<origin>-5e-4,0</origin> 

<spacing>1.0e-4, 1.0e-4</spacing> 

<nodes>256, 111</nodes> 

<mesh-bc wall="bottom" type="symmetry"/> 

</mesh> 

</domain> 

 
It is not necessary to specify symmetry on 𝑟 = 0 the edge for an axisymmetric code (domain type="zr") but I left it here 
in case you want the run the code in the xy mode (domain type="xy") 
 
The materials.xml file lists known materials used for specifying boundaries and gas particles, 
 
<materials> 

  

<material name="N2" type="kinetic"> 

<molwt>28</molwt> 

<charge>0</charge> 

<spwt>1e11</spwt> 
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<ref_temp>275</ref_temp>; 

<visc_temp_index>0.74</visc_temp_index> 

<vss_alpha>1.00</vss_alpha> <!--1.36--> 

<diam>4.17e-10</diam> 

</material> 

  

<material name="SS" type="solid"> 

<molwt>52.3</molwt>  

<density>8000</density> 

</material> 

  

</materials> 

 
The file lists two materials: nitrogen molecules and stainless steel for surfaces. One important thing to note here is that 
for a kinetic material (flying gas particles) we also specify various DSMC parameters. These values for nitrogen come 
from Tables A1, A2 and A3 in Appendix A of Bird’s 2003 book. The vss_alpha can be used to turn on the Variable Soft 
Sphere (VSS) collision model. Value of 1 results in the faster Variable Hard Sphere (VHS) being used. I ran few cases and 
did not observe any significant differences between the two and hence we’ll be using VHS in this example. You can 
speed up the code by using a higher specific weight with the risk of adding numerical error due to not having enough 
particles per cell. 
 
The boundaries.xml file specifies surface boundaries in an SVG format. You could generate the segments for complex 
geometries using “path to SVG” in GIMP or Inkscape, but for a simple geometry, you can just make the file by hand, 
 
<boundaries> 

  

<boundary name="wall" type="solid"> 

<material>SS</material> 

<path>M 0, 11e-3 L 0,8e-4 -1e-3,8e-4</path> 

<temp>288</temp> 

</boundary> 

  

<boundary name="inlet" type="solid"> 

<material>SS</material> 

<path>M wall:last L -1e-3,0</path> 

<temp>288</temp> 

</boundary> 

  

<boundary name="ambient" type="virtual"> 

<path>M 25e-3,0 L 25e-3,11e-3 0,11e-3</path> 

</boundary> 

  

</boundaries> 

 
The “ambient” boundary is marked as virtual. This allows this boundary to be used when specifying particle sources but 
is subsequently invisible to particles during the push. Although “inlet” is marked as solid, it doesn’t seem to make a 
difference. A virtual inlet means that a particle moving back to the tank is removed, and subsequently new particle is 
generated by the ambient source. However, since both use the same algorithm to sample a half Maxwellian, the result is 
the same. 
 
Particles sources are listed in the sources.xml file, 
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<sources> 

  

<!--high pressure tank--> 

<boundary_source name="inlet_750Torr" type="ambient"> 

<enforce>pressure</enforce> 

<material>N2</material> 

<boundary>inlet</boundary> 

<drift_velocity>0,0,0</drift_velocity> 

<temperature>288</temperature> 

<total_pressure>1.0e5</total_pressure> 

</boundary_source> 

  

<!--ambient environment--> 

<boundary_source name="amb_0.5Torr" type="ambient"> 

<enforce>pressure</enforce> 

<material>N2</material> 

<boundary>ambient</boundary> 

<drift_velocity>0,0,0</drift_velocity> 

<temperature>288.0</temperature> 

<total_pressure>66.66</total_pressure> 

</boundary_source> 

  

</sources> 

 
As you can see, we are specifying two sources of type ambient. This source attempts to maintain constant density, 
pressure, or partial pressure (as given by the enforce parameter) in cells along the given boundary. Particles are sampled 
from a half-Maxwellian at the given temperature (288K). The first source generates particles for the 750 Torr reservoir, 
while the second source generates particles to fill the low pressure tank. Pressures are given in Pascal, hence values in 
Torr need to be multiplied by 133.322. 
 
Finally, we have interactions.xml file, which specifies particle-surface and particle-particle interactions, 
 
<material_interactions> 

<surface_hit source="N2" target="SS"> 

<product>N2</product> 

<model>diffuse</model> 

<prob>1.0</prob> 

</surface_hit> 

  

<dsmc model="elastic"> 

<pair>N2,N2</pair> 

<sigma>Bird463</sigma> 

</dsmc>  

  

</material_interactions> 

 
This file tells the simulation that a nitrogen molecule hitting a stainless steel surface should reflect diffusely. Collisions 
between nitrogen molecules are handled with DSMC, with the collision cross-section given by Equation 4.63 in [3]. 

Results 

Once the simulation finishes, you will have a file called field.vts which you can visualize using Paraview, Figure 12 
The online article discusses some steps for visualizing this file. Figure 13 shows the gas number density, pressure, and 
temperature. We can clearly see the formation of a the triple point and a Mach disc.  
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Figure 12. Mach number visualized in Paraview with streamlines added 

 

 
 
 

 

Figure 13. Number density, pressure, and temperature 

 

IV. Extending Starfish-LE 

The core Starfish-LE code can be easily extended using plugins. To do so, create a new project inheriting starfish-LE.jar. In 
your project, define a new main function which initializes an ArrayList of classes inherited from Plugin. Then instantiate a 
new Starfish object and call its start function with this list. This is in fact demonstrated in Starfish-LE default main which 
uses CollisionsPlugin as a demo. 
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public static void main(String args[])  

{ 

    /*demo of starting Starfish with plugins*/ 

    ArrayList<Plugin> plugins = new ArrayList<Plugin>(); 

    plugins.add(new CollisionsPlugin()); 

  

    /*make a new instance*/ 

    new Starfish().start(args, plugins);   

} 

 
Each command that can be called from the XML input file corresponds to an object derived from RunnableModule. The 
code begins by registering known modules such as “time”, “starfish”, “output” and so on. Next, the register method is 
called on each provided plugin: 
 
/*register modules*/ 

RegisterModules(); 

  

if (plugins!=null) 

    for (Plugin plugin:plugins) 

        plugin.register();  

 
Withing this register method you can add whatever code is needed to extend the code capabilities. For instance, the 
Collisions plugin registers additional interaction types and a collision cross-section as: 
 
public void register() 

{   

    /*add new interactions*/ 

    InteractionsModule.registerInteraction("DSMC",DSMC.DSMCFactory); 

    InteractionsModule.registerInteraction("MCC", MCC.MCCFactory); 

  

    /*add cross-section*/ 

    InteractionsModule.registerSigma("Bird463",SigmaPlus.makeSigmaBird463);  

}  

 
Please do not hesitate to contact us for more specific information. 
 

V. Bugs and Future Work 

Please report any bugs or feature requests to info@particleincell.com. 
 
Current work on Starfish includes the following: 
1. Re-enabling of multi-mesh support 
2. Addition of automatic adaptive mesh refinement 
3. Improvements in parallelization by adding support to additional functions 
4. Implementation of an electromagnetic EM-PIC model 
5. Addition of fluid solver 
  

mailto:info@particleincell.com
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VI. Command Reference 

This section summarizes all commands that can be included in the starfish.xml file. Each key can be supplied as an attribute 
or as an XML node, for instance 
 
<starfish randomize=”true”/> 
 
and 
 
<starfish> 
<randomize>true</randomize> 
</starfish> 
 
are identical.  Examples of data field types are given below. 
 

type description example(s) 

int integer (whole number) value -1 

int2 two integers separated by comma 41,50 

float a floating point number in double precision 1.06e23 

float2 two floats separated by comma 1.07,-3.2 

float_list arbitrary number of comma-separated floats -23.2,0,12.8 

bool a true or false value true 

string any text inlet 

string_list multiple comma separated strings pressure, nd.xe 

string_pairs multiple comma separated strings in “s1=s2” format. The 
“s1=” part is not needed if “s2=s2”. 

bfi=bi, sigma 

string_tupples multiple pairs of strings grouped inside square brackets [u.xe,v.xe], [efi, efj] 

element a valid child XML element <output> ... </output> 

 

VI.a) General 
VI.a.1) NOTE 

Prints the specified message to the screen and log file. 

Key Type Default Description 

N/A string  Note body 

Example 
<note>Simulation of ion flow past a charged sphere</note> 

 

VI.a.2) LOG 

Controls logging level 

Key Type Default Description 

level string  One of [DEBUG, LOG_LOW, LOG, MESSAGE, WARNING, ERROR, 
EXCEPTION]. Error and exception messages get printed regardless of 
the log level. 

Example 
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<note>Simulation of ion flow past a charged sphere</note> 

 
 

VI.a.3) RESTART 

Controls saving and reloading of restart data. Currently only particle data are saved. Support for field and fluid 
materials saving and restarting is pending. 

Key Type Default Description 

it_save bool 500 Frequency of restart data saves 

nt_add int -1 Number of additional time steps to run after restart load if >0  

load bool false Controls whether restart file should be loaded 

save bool false Controls whether restart data should be saved 

Example 
<restart it_save="200" nt_add="2500" load="true" save="false" /> 

 

VI.a.4) STARFISH 

Runs the actual simulation. 

Key Type Default Description 

randomize bool true Will randomize the random number generator if true. Set to false 
to replicate the same simulation. 

max_processors int num CPUs -1 Maximum number of threads to use for multithreading. By 
default set to CPU “number of cores” minus 1. 

Example 
<starfish randomize="true" /> 

 

VI.a.5) STOP 

Stops the simulation. Used for debugging, as the rest of the input file will not processed. Otherwise, the rest 
of the commands would need to be commented out. 

Key Type Default Description 

Example 

<stop /> 

 

VI.a.6) TIME 

Controls the duration of the simulation.  

Key Type Default Description 

dt float  Simulation time step, in seconds. 

num_it int  Number of time steps to simulate. 

steady_state string 
/ int 

auto Time step at which the steady state is reached. If “auto”, Starfish 
automatically sets steady state based on differences in particle counts.  

Example 
<time> 
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<dt>5e-6</dt> 

<num_it>1000</num_it> 

</time> 

 
VI.b) Input / Output 

VI.b.1) ANIMATION 

Wrapper to periodically save simulation results. Works by executing <output> at the specified interval. 

Key Type Default Description 

start_it int  Time step at which output should begin 

frequency int  Number of time steps between file saves 

output element  Entire <output> XML element, following syntax as noted below. For 
VTK files, file name will be modified to include the time step number. 

clear_samples boolean true Specifies whether density and velocity samples should be cleared 
after each save, but only prior to steady state 

Example 
<animation start_it="1" frequency="50"> 

<output type="2D" file_name="results/field_ani.vts" format="vtk"> 

<scalars>phi, nd.xe+,nd.xe</scalars> 

<vectors>[efi, efj], [u.xe+,v.xe+]</vectors> 

</output> 

</animation> 

 

VI.b.2) AVERAGING 

Enables averaging of specified variables. The averaged values will have “-ave” append to the prefix. For 
instance, the average number density of o+ will be called “nd-ave.o+”, while “nd.o+” will contain the 
instantons data. Starting time step should correspond to time after steady state is reached. 

Key Type Default Description 

frequency int 1 Number of time steps between averaging samples 

start_it int -1 Starting time step for averaging 

variables string_list  List of variables to average 

Example 

<averaging frequency="25" start_it="10000"> 

<variables>phi,rho,nd.o+,nd.e-,u.o+,v.o+</variables> 

</averaging> 

 

VI.b.3) LOAD_FIELD 

Loads field data from a file. Can be used, among other things, to load an external magnetic field. 

Key Type Default Description 

format string TECPLOT File format. By default, the code supports TECPLOT or TABLE. A 
TECPLOT file should list variables on a single VARIABLES line. The 
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TABLE format is assumed to start with ni,nj, and is hardcoded for 
“z,r,B,Bz,Br” data.  

file_name string  name of the file to load 

coords string_list  names of two file variables to correspond to XY, RZ, or ZR, according 
to the specified <domain> type. 

vars string_pairs  variables to load in “starfish_var=file_var” format. The assignment 
part is not needed if the file variable is the same as the expected 
Starfish variable name.  

Example 

<load_field format="tecplot" name="bfield"> 

<file_name>bfield.dat</file_name> 

<coords>z,r</coords> 

<vars>bfi=bz,bfj=br,lambda</vars> 

</load_field> 

 

-- example of a Tecplot file format –- 

VARIABLES = "z", "r", "n_n" 

ZONE I=52, J=18, F=POINT 

0.0491  0.0071  1.09994e+014   

 

-- example of a Table format -- 

47 22 

  -0.018  0     0.03     0.03   0 

 

VI.b.4) OUTPUT 

Wrapper to periodically save simulation results. Works by executing <output> at the specified interval. 

Key Type Default Description 

type string  Type of output to generate. Must be one of “1D”, “2D”, 
“boundaries”, or “particles”.  

file_name string  Name of output file 

format string  Output file format. Currently only “TECPLOT” and “VTK” are 
supported. 

scalars (or  
variables) 

string_list  List of node-centered scalar variables to output. For backward 
compatibility, “variables” can be used as well. 

cell_data string_list  List of cell-centered scalars to output 

vectors string_tupples  Pairs of node-centered scalar variables to group together as 
vectors. Only affects VTK output. 

 

TYPE = “1D” 

Saves a slice of mesh data by exporting data only along a single given “i” or “j” index. Data can be saved to 
individual files or a 2D “time data” in which the y-axis is time. 
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mesh string  Name of the mesh to output (only a single mesh output is 
supported). 

index string  Logical grid position to output in format “I=xx” or “J=xx”. Can 
specify “AVERAGE” to average output average data along the axis. 

time_data_lines int 1 The “y” dimension of the time data grid - number of time samples 
in a file. If set to 1, a one dimensional file is generated. 

time_data_write_skip int  Number of lines between time data file updates. 

Example 

<output type="1D" file_name="profile.vts" format="vtk"> 

<mesh>mesh1</mesh> 

<index>I=1</index> 

<variables>phi, rho, nd.xe+</variables> 

</output> 

 

<animation start_it="1" frequency="100" clear_samples="true"> 

<output type="1D" file_name="results/field_1D.vts" format="vtk"> 

<scalars>phi,rho,nd.e-, nd.ar+, t.e-, t.ar+, u.e-, u.ar+</scalars> 

<mesh>mesh</mesh> 

<index>J=average</index> 

<time_data_lines>500</time_data_lines> 

<time_data_write_skip>10</time_data_write_skip> 

</output> 

</animation> 

 

TYPE = “2D” 

Saves mesh field data. No additional inputs. 

Example 
<output type="2D" file_name="results/field.vts" format="vtk"> 

<scalars>psi, phi, te, rho, sigma, nd.xe+</scalars> 

<vectors>[ue,ve], [u.xe+, v.xe+], [efi, efj], [jx,jy]</vectors> 

</output> 

 

TYPE = “BOUNDARIES” 

Saves surface data along boundaries. No additional inputs. 

Example 
<output type="boundaries" file_name="boundaries.vtp" format="vtk"> 

<variables>deprate.xe+, flux-normal.xe+</variables> 

</output> 

 

TYPE = “PARTICLES” 

Exports user specified number of randomly selected particles. 

count int  Number of particles to output 

Example 
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<output type="particles" file_name="particles.dat" format="tecplot"> 

<species>ti2+,e-</species> 

<count>10000,10000</count> 

</output> 

 

VI.b.5) PARTICLE_TRACE 

Command to sample position and velocity of a specified particle to generate a trace file 

Key Type Default Description 

file_name string  Name of output file 

format string TECPLOT File format, currently only “TECPLOT” and “VTK” are supported. 

material string  Material of the sampled particle 

id int  Particle id 

start_it int  Starting time step for output 

Example 

<particle_trace file_name="trace.dat" material="HC"> 

<id>20685</id> 

<start_it>495</start_it> 

</particle_trace> 

 

VI.b.6) STATS 

Command to control frequency of saves to a global diagnostics file 

Key Type Default Description 

file_name string starfish_stats.csv Stats file name 

skip int 1 Output frequency. Value <=0 disables file output. 

Example 

<stats skip="10" /> 

 

VI.b.7) SAMPLE_VDF 

 Produces histogram of the velocity distribution function of a given material in a box 

Key Type Default Description 

material string  Kinetic material to sample 

xmin float2  [x1,y1] corner of the sampling region 

xmax float2  [x2,y2] corner of the sampling region 

speed_bins int 20 number of histogram bins for speed 

vel_bins int3 20,20,20 number of histogram bins for velocity 

start_it int -1 time step to start sampling 

skip_sample int 100 number of time steps between sampling 

skip_output int 1000 number of time steps between file outputs 

file_name string  file name prefix to output to. Data is stored in .csv format. 
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Example 

<sample_vdf> 

<material>e-</material> 

<file_name>results/vdf_e-</file_name> 

<xmin>1.5e-6,0</xmin> 

<xmax>3.0e-6,5e-7</xmax> 

<speed_bins>15</speed_bins> 

<vel_bins>15,15,15</vel_bins> 

<start_it>-1</start_it> 

<skip_sample>500</skip_sample> 

<skip_output>1000</skip_output> 

</sample_vdf> 

 

VI.c) Materials 
VI.c.1) MATERIALS 

Definition of materials known to the simulation. Contains one or more <material> elements. 

Key Type Default Description 

material element  Material definition. See the following entry for Material for data fields. 

Example 

<materials> 

 

<material name="Ar" type="kinetic"> 

.. 

</material> 

 

<material name="SS" type="solid"> 

.. 

</material> 

 

</materials> 

 

VI.c.2) MATERIAL 

Definition of a single material embedded within <materials> element 

Key Type Default Description 

type string  Material type. Can be one of “solid” (materials that do not 
change), “kinetic” (materials simulated with particles), and 
“fluid_diffusion” (density updated with advection-diffusion 
solver). Additional material types can be provided by plugins. 

name string  name of the material 

init string_list  List of one or more initial values for the following fields: “nd”, 
“nd_back” (#/m3), “u”, “v” (m/s), and “T” (K). With the exception 
of nd_back, these entries are currently used only to set the 
initial values of density, velocity, or temperature on the 
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computational mesh. The value of nd_back is added to the 
density computed from particles and can be used to set a 
minimum material density floor.  

molwt float  material molecular weight 

charge float  material charge in elementary charge units 

work_function float  material work function in eV 

p_vap_coeffs float3  coefficient for vapor pressure computation using Antoine 
equation, log10 𝑝 = 𝐴 − 𝐵/(𝐶 + 𝑇) 

ionization_energy float -1 ionization energy in eV, used by ionization MCC algorithm 

type = ”SOLID” 

Solid materials are used on objects 

    

type = ”KINETIC” 

Kinetic materials are modeled as particles with the PIC and/or DSMC method 

spwt float  default specific weight, number of real molecules pre simulation 
particle 

frozen bool false particle positions and velocities will not update if set to true. 
Typically used to freeze particles from a restart file to create a 
fixed background. 

ref_temp float 275 reference temperature for DSMC cross-section model 

visc_temp_index float 0.85 viscosity index for DSMC model 

vss_alpha float 1 VSS coefficient, VHS logic used if 1 

diam float 5e-10 molecular diameter in m 

particle_merge_skip int -1 number of time steps between of particle merge operations 

vel_grid_dims int3  number of cells for u,v,w velocity grid for particle merging. Cells 
with more than two particles will be merged down to two. 

type = ”FLUID_DIFFUSION” 

Fluid material modeled using the advection-diffusion equation. Not yet fully implemented! 

mu float  material dynamic viscosity in kg/m/s 

type = ”FLUID_ELECTRONS” 

Fluid description of electrons. So far, only the QN and Boltzmann models are supported. 

model string  One of [“QN”, “BOLTZMANN”] 

phi0 double  Reference potential for the Boltzmann model, if not specified, 
values used by the Poisson solver are used.  

kTe0 double  Reference temperature for the Boltzmann model, if not 
specified, values used by the Poisson solver are used. 

n0 double  Reference density for the Boltzmann model, if not specified, 
values used by the Poisson solver are used. 

Example 

<!-- charged particle with fixed background floor --> 



Particle In Cell Consulting LLC Starfish User’s Guide 

 

 

  33 

 
 

<material name="Xe+" type="kinetic"> 

<molwt>131.3</molwt> 

<charge>1</charge> 

<init>nd=1e15,nd_back=1e4,T=1000 </init> 

<mu>0</mu> 

<spwt>2e9</spwt> 

</material> 

 

<!-- neutral kinetic material with DSMC data --> 

<material name="Ar" type="kinetic"> 

<molwt>39.94</molwt> 

<charge>0</charge> 

<spwt>5e11</spwt> 

<ref_temp>273</ref_temp>; 

<visc_temp_index>0.81</visc_temp_index> 

<vss_alpha>1.00</vss_alpha>  

<diam>4.17e-10</diam> 

</material> 

 

<!-- solid material -->  

<material name="SS" type="solid"> 

<molwt>52.3</molwt>  

</material> 

 

VI.d) Material Interactions 
VI.d.1) MATERIAL_INTERACTIONS 

Controls inter-material interactions, including the gas material / surface boundary interface. Interactions are 
specified via child elements. Starfish natively supports four types of interactions:  

1. surface_hit: interaction between material and a surface boundary 
2. dsmc: interaction between two kinetic materials 
3. mcc: interaction between a kinetic source and a fluid target 
4. chemistry: interaction between two fluid materials 

Key Type Default Description 

surface_hit / mcc / 
chemistry / dsmc 

element  Available interaction types. Additional types can be implemented 
by plugins. 

Example 

<material_interactions> 

 

<surface_hit> 

... 

</surface_hit> 

 

<dsmc> 

... 

</dsmc>  
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</material_interactions> 

 

VI.d.2) SURFACE_HIT 

Command to control frequency of saves to a global diagnostics file 

Key Type Default Description 

file_name string starfish_stats.csv Stats file name 

skip int 1 Output frequency. Value <=0 disables file output. 

Example 

<stats skip="10" /> 

 

VI.d.3) DSMC 

Enables DSMC collisions between two kinetic materials 

Key Type Default Description 

pair string_list  Names of the two materials participating in this interaction 

model string  Currently only “elastic” is supported 

frequency int 1 Number of time steps between collisions 

sig_cr_max float 1e-16 Initial value for the <sigma*cr>_max NTC parameter 

sigma string  Collision cross-section. Natively the following models are 
supported: 

 const: 𝜎 = 𝑐0 

 inv: 𝜎 = 𝑐0/𝑔 

 bird463: 𝜎 = 0.25𝜋𝑑𝑟𝑒𝑓
2 (

2𝑘𝑇𝑟𝑒𝑓

𝑚𝑟𝑔2 )
𝜔−0.5 

/Γ(2.5 − 𝜔) , 

equation 4.63 in Bird 2003 

 tabulated: sigma value provided as a list of  

sigma_coeffs float_list  Collision cross-section coefficients 

sigma_tabulated float2_list   

sigma_dep_var string  One of [VELOCITY, ENERGY], specifies the variable used to 
compute cross-section 

Example 

<dsmc model="elastic"> 

<pair>N2,N2</pair> 

<sigma>Bird463</sigma> 

</dsmc> 

 

 

VI.d.4) MCC 

Enables MCC collisions between a kinetic and fluid / kinetic target. Properties of the target material are not 
affected by the collision and hence this interaction is suitable only for cases of a rarefied source material 
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interacting with a much denser target. A kinetic material can be used as the target, in which case, the density 
obtained by scattering particles to the grid will be used to obtain collision probability.   

Key Type Default Description 

source string  Name of the source kinetic material. 

target string  Name of the target fluid or kinetic material 

product  <source> Optional post-collision material of the source. By default, there 
is no species change. 

model   Collision model, one of [MEX/ELASTIC, CEX, IONIZATION]. MEX 
or ELASTIC uses VHS to approximate momentum transfer, CEX 
models charge exchange, and IONIZATION models ionization. 

sigma string  Collision cross-section. See description of DSMC for details. 

max_target_temp float  Maximum temperature of the target species 

ionization_energy string   

Example 

<mcc model="cex"> 

<target>ar</target> 

<source>ar+</source> 

<sigma>inv</sigma> 

<sigma_coeffs>1e-16</sigma_coeffs> 

</mcc> 

 

<mcc model="ionization">  

<source>e-</source> 

<target>Cu0</target> 

<product>Cu+</product> 

<sigma>table</sigma> 

<sigma_tabulated> 

[8.216227, 0.01989977e-20], 

[11.279161, 0.8704262e-20], 

... 

</sigma_tabulated> 

<sigma_dep_var>energy</sigma_dep_var> 

<max_target_temp>10000</max_target_temp> 

<frequency>50</frequency> 

<!-- ionization_energy needs to be specified in material def for Cu --> 

</mcc> 

 

VI.d.5) CHEMISTRY 

Enables fluid-fluid interactions. Densities of source materials (which can be kinetic or fluid) along with 
temperature (or energy) of a dependent material are used to compute the reaction, 𝑛𝑠1𝑛𝑠2𝑘(𝑇𝑑). Products 
are then generated accordingly and source material densities are depleted. 

Key Type Default Description 

sources string_list  List of reactants with optional multipliers 
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products string_list  List of products 

rate element  Reaction rate equation type 

RATE 

type string  Currently only “POLYNOMIAL” is supported. This evaluates (𝑐0 + 𝑐1𝑣 +
𝑐2𝑣

2 + ⋯)𝑐𝑚𝑢𝑙𝑡 

coeffs float_list  List of model coefficients 

multiplier float  Coefficient multiplier 

dep_var element  Information about the dependent variable 𝑣 in the rate model. 

DEP_VAR 

mat string  name of the dependent variable 

wrapper string NONE Options are NONE, LOG10, or LOG10ENERGY 

Example 

<chemistry> 

<sources>Xe,e-</sources> 

<products>Xe+,2*e-</products> 

<rate type=”polynomial”> 

<coeffs>-0.57, 6.1978, -23.19, 30.439, 2.8407, -18.722</coeffs> 

<multiplier>1e-20</multiplier>  

<dep_var wrapper=”log10energy” mat=”e-“ /> 

</rate> 

</chemistry> 

 

VI.e) Boundaries 
VI.e.1) BOUNDARIES 

This command is used to define the surface geometry. It contains several <boundary> elements each 
specifying a particular surface spline. 

Key Type Default Description 

boundary element  Definition of a single boundary 

transform element  Optional, defines global transformation applied to all boundaries 

TRANSFORM 

scaling float2 1,1 Scaling in the i and j direction 

translation float2 0,0 translation in the I and j direction 

rotation float 0 Rotation about the z axis 

reverse bool false Flips normal vector orientation 

Example 

<boundaries> 

<transform> 

<scaling>1e-3,-1e-3</scaling> 

<translation>0,0</translation> 

<reverse>true</reverse> 

</transform> 
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<boundary>...</boundary> 

<boundary>...</boundary> 

</boundaries> 

 

VI.e.2) BOUNDARY 

Defines a single surface boundary spline. 

Key Type Default Description 

name string  Name of the boundary 

type string solid Boundary type. Can be one of: SOLID for a solid surface with fixed Dirchlet 
b.c., OPEN for Neumann b.c. (not fully supported), SYMMETRY for 
symmetric boundary reflecting particles, VIRTUAL for boundaries useful for 
attaching sources but that are not affect material propagation, and SINK 
for an absorbing boundary. Note that some of these are either extraneous 
or not yet fully implemented.  

value float 0 Boundary condition value. For SOLID boundaries this sets the Dirichlet 
potential for the Poisson solver. 

material string  Boundary material, only required for SOLID 

temp float 273.15 Boundary temperature, used to compute post-impact velocity 

path string  Spline definition in SVG-like format. The general syntax is [COMMAND] 
x1,y1 x2,y2 ... [COMMAND] x,y. The following commands are supported: 
“M x,y” move to (x,y), “m dx,dy” move by offset (dx,dy), “L x,y” line to (x,y) 
from the previous point, “l dx,dy” line to point offset by (dx,dy) from the 
last point, “C x1,y1 x2,y2,...” smooth cubic spline through points (x1,y1), 
(x2,y2), ... Commands do not need to be repeated, for instance “M x1,y1 L 
x2,y2 L x3,y3 L x4,y4” can be written as “M x1,y1 L x2,y2 x3,y3 x4,y4”. Points 
need to be specified in counter-clockwise order around an solid boundary 
(or in clockwise order around an open boundary), as point ordering 
controls the normal vector orientation. Note that unlike in SVG, cubic 
splines are specified by simply listing the points through which the spline 
will pass and the control knot points are omitted. 

transform element  Optional transformation parameters 

reverse bool  Optional, flips normal vector orientation, overridden by entry in 
<transform> if both defined. 

Example 

<boundary name=”inlet” value=”300”> 

<material>SS</material> 

<path>M 0,0 L 400,71</path> 

<material>vent</material> 

<reverse>true</reverse> 

<transform> 

<scaling>1e-3,1e-3</scaling> 

</transform> 
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</boundary> 

 

<boundary name=”downstream” type=”open”> 

<path>M inlet:last C 0.086,0.007 0.085,0.014 0.0791,0.02</path> 

</boundary> 

 

VI.f) Domain 
VI.f.1) DOMAIN 

Specifies details of the computational domain (simulation mesh).  Contains one or more <mesh> elements. 

Key Type Default Description 

type string XY Controls the meaning of “i” and “j” indexes. Available options are XY, RZ, 
and ZR. Axisymmetric corrections are applied for RZ and ZR types. 

mesh element  Mesh definition. Currently support for multiple meshes is limited but will 
be corrected in an upcoming version. 

Example 

<!-- domain file --> 

<domain type=”rz”> 

 

<mesh>...</mesh> 

<mesh>...</mesh> 

</domain> 

 

VI.f.2) MESH 

Specifies details of a single mesh. Currently two types are supported: uniform Cartesian mesh or an elliptic, 
body fitted, mesh. 

Key Type Default Description 

name string  Mesh name 

type string  Mesh type, one of UNIFORM or ELLIPTIC 

mesh-bc element  Specifies mesh boundary conditions 

type=”UNIFORM” 

The following inputs are required for UNIFORM mesh 

origin float2  Coordinates of i=0,j=0 point 

spacing float2  Distance between nodes 

nodes int2  Number of nodes in i and j direction 

type=”ELLIPTIC” 

The following inputs are required for ELLIPTIC mesh. This option creates a stretched mesh between four 
boundaries with a prescribed number of nodes in the i and j direction. 

left string  Name of the <boundary> forming the left edge 

right string  Name of the boundary for the right edge 

bottom string  Name of the boundary for the bottom edge 

top string  Name of the boundary for the top edge 
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nodes int2  Number of nodes in i and j direction 

MESH-BC 

value float 0 Boundary condition value. Currently only used to set Dirichlet boundaries. 

wall string  Mesh wall to apply this boundary to. One of “left”, “right”, “bottom”, or 
“top”. 

type string  Mesh boundary type, supported values include OPEN, DIRICHLET< 
NEUMANN, PERIODIC, SYMMETRY, SINK, and CIRCUIT. 

Example 

<mesh type=”uniform” name=”mesh”> 

<origin>0, 0</origin> 

<spacing>5e-5, 1e-4</spacing> 

<nodes>51, 361</nodes> 

<mesh-bc wall=”left” type=”symmetry” /> 

<mesh-bc wall=”bottom” type=” eumann” /> 

</mesh> 

 

<mesh type=”elliptic” name=”downstream”> 

<left>exit_plane</left> 

<bottom>symmetry_outside</bottom> 

<right>downstream</right> 

<top>body</top> 

<nodes>35,13</nodes> 

</mesh> 

 

VI.g) Sources 
VI.g.1) SOURCES 

Specifies material sources. Starfish supports two types of sources: boundary sources that inject mass along a 
specified boundary, and volume source that generate mass within the computational mesh.  

Key Type Default Description 

boundary_source / 
material_source / 
volume_source 

element  The actual source definitions 

Example 

<sources> 

<boundary_source>...</boundary_source> 

<volume_source>...</volume_source> 

</sources> 

 

VI.g.2) BOUNDARY_SOURCE 

Specifies material sources. Starfish supports three types of sources: boundary that inject mass along a 
specified boundary, material sources that act like boundary sources but are applied to all boundaries with the 
given material, and volume source that generate mass within the computational mesh.  
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Key Type Default Description 

name string  source name 

type string  source type, one of UNIFORM, MAXWELLIAN, AMBIENT, and 
COSINE  

material string  name of the injected material 

boundary string  surface boundary name to attach the source to 
 
Listed below are additional type-specific inputs. 

type=”UNIFORM” 

This source injects a cold beam. It is a streamlined implementation of a Maxwellian source with T=0K. 

mdot float  Mass flow rate in kg/s 

v_drift float  Drift velocity in m/s 
 

type=”MAXWELIAN” 

Source for injecting mass sampled from the drifting Maxwellian velocity distribution function 

mdot float  Mass flow rate in kg/s 

v_drift float  Drift velocity in m/s 

temperature float  Temperature in K 

start_it float 0 Time step to begin injection 

end_it float -1 Time step to end injection, or -1 to ignore 
 

type=”AMBIENT” 

Generates mass in cells adjacent to the specified boundary such that prescribed density or pressure is 
maintained. Particle velocities are sampled from the Maxwellian distribution. 

drift_velocity float3 0,0,0 Drift velocity to apply to sampled material 

temperature float  Assumed gas temperature in K, controls injection velocity and also 
used to scale pressure to density from 𝑃 = 𝑛𝑘𝑇. 

enforce string TOTAL_P
RESSURE 

Controls which property the source should maintain. Available 
options are TOTAL_PRESSURE, PARTIAL_PRESSURE, and DENSITY 

density float  Required for enforce=”DENSITY”, controls the desired number 
density in m-3. 

total_pressure float  Required for enforce=”TOTAL_PRESSURE” or 
“PARTIAL_PRESSURE”, in Pa 

partial_pressure float  Required for enforce=”PARTIAL_PRESSURE”, used to control the 
desired species fraction per 𝑃𝑖/𝑃𝑡𝑜𝑡 

 

type=”COSINE” 

Injects particles with velocity sampled from the cosine distribution about the surface normal 

mdot float  Injection mass flow rate in kg/s 

v_drift float  Drift velocity in m/s 
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type=”THERMIONIC” 

Models thermionic emission of electrons. Emission rate controlled by boundary spline temperature. Emission 
current obtained from Richardson model, 𝐽 = 𝜆𝑅𝐴0𝑇

2exp (−𝑊 𝑘𝑇⁄ ), where 𝐴0 ≈ 1.2 × 106 𝐴𝑚−2𝐾−2 . 

lambda_r float 0.5 Coefficient for emission current calculation 

use_field boolean true Controls whether Schottky (local electric field) emission should be 
included. 

 

type=”VAPORIZATION” 

Models evaporation of a neutral material from a hot cathode. Emission rate controlled by material vapor 
pressure coefficients and boundary temperature. 

 

Example 

<boundary_source name="neutral_source" type="maxwellian"> 

<material>xe</material> 

<boundary>inlet</boundary> 

<mdot>4e-7</mdot> 

<v_drift>1000</v_drift> 

<temp>1000</temp> 

</boundary_source> 

 

<boundary_source name="amb_0.5Torr" type="ambient"> 

<enforce>pressure</enforce> 

<material>N2</material> 

<boundary>ambient</boundary> 

<drift_velocity>0,0,0</drift_velocity> 

<temperature>288.0</temperature> 

<total_pressure>66.66</total_pressure> 

</boundary_source> 

 

VI.h) Solver 
VI.h.1) SOLVER 

Activates a field solver. Currently only plasma potential solvers are implemented. 

Key Type Default Description 

type string  Solver type 

initial_only bool false If set to true, only the initial field will be computed 

max_it float 5000 Maximum number of solver iterations 

tol float 1e-6 Solver tolerance 

nl_max_it float 50 Maximum number of solver iterations for a non-linear solver 

nl_tol float 1e-4 Non-linear solver tolerance 

type=”CONSTANT-EF” 

This “solver” fixes electric field components to the prescribed value 
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comps float2  Values for Ei, Ej in V/m 

type=”QN” 

Sets potential from the quasi-neutral Boltzmann relationship 𝜙 = 𝜙0 + 𝑘𝑇𝑒,0 ln(𝑛 𝑛0⁄ ). 

n0 float  Reference number density, #/m3 

Te0 float  Reference temperature in eV 

phi0 float  Reference potential in V 

type=”POISSON” 

Solves the Poisson’s equation 𝜖0∇
2𝜙 = −𝑒(𝑛𝑖 − 𝑛𝑒), where 𝑛𝑒 is obtained directly from simulation electrons 

in a linear mode, or is set to 𝑛𝑒 = 𝑛0 exp (
𝜙−𝜙0

𝑘𝑇𝑒,0
) in the non-linear mode. 

linear bool false Controls how the electron density term is computed. 

n0 float 1e15 Reference density for the non-linear term in #/m3 

Te0 float 1 Reference temperature for the non-linear term in eV 

phi0 float 0 Reference potential for the non-linear term in V 

Example 

<!-- non-linear poisson solver example --> 

<solver type="poisson"> 

<n0>1e12</n0> 

<Te0>1.5</Te0> 

<phi0>0</phi0> 

<max_it>100000</max_it> 

<tol>1e-3</tol> 

<nl_tol>1e-2</nl_tol> 

</solver> 

 

<!-- prescribed electric field example --> 

<solver type="constant-ef"> 

<comps>0,0</comps> 

</solver> 

 

<!-- quasineutral Boltzmann inversion example --> 

<solver type="qn"> 

<n0>1e12</n0> 

<Te0>1.5</Te0> 

<phi0>0</phi0> 

</solver> 

 

 

VII. Data Fields 

The below table summarizes data field and boundary variables in the baseline configuration. All material-specific fields 
follow syntax “base.mat”, for instance “nd.xe” is the number density of material “xe”. Averaged fields generated by the 
<averaging> command will have “-ave” appended to the base, for instance “phi-ave” and “nd-ave.xe”. 
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VII.a) Mesh Data 
 

Name  Units Description 

VII.a.1) General 

nodevol m-3 Mesh node volume, used for computing number density 

phi V plasma potential 

rho C/m3 charge density 

efi,efj V/m electric field components 

bfi,bfj T magnetic field components 

p Pa total pressure 

VII.a.2) Material-Specific (base.mat) 

nd #/m3 material number density 

u,v,w m/s node-averaged gas mean velocity 

nd-ave #/m3 steady-state averaged number density 

u-ave,v-ave,w-ave m/s steady-state averaged gas mean velocity 

t K average gas temperature 

p Pa gas pressure, obtained from the ideal gas law 

t1,t2,t3 K gas temperature in i,j,k direction 

mpc # number of simulation macroparticles per cell 

count-sum # internal variable used to obtain density, contains specific weight sum 

u-sum,v-sum,w-sum m/s internal variable used to obtain velocity, contains sum of wspu 

uu-sum,vv-sum,ww-
sum 

 internal variable used to obtain temperature, contains sum of wspu
2 

mpc-sum # internal variable used to obtain mpc, contains sum of macroparticles 

VII.a.3) MCC 

mcc-count,  
mcc-count2, ... 

#  Number of collisions  

mcc-nu,  mcc-nu2, ... #/s MCC Collision rate 

mcc-real-sum, 
mcc-real-sum2, ... 

# Internal variable used to compute MCC collision count, stores cumulative 
number of real particles undergoing collisions 

mcc-count-sum, 
mcc-count-sum2, ... 

# Internal variable used to compute MCC collision count, stores cumulative 
number of MCC collisions 

VII.a.4) DSMC 

dsmc-count,  
dsmc-count2, ... 

# Number of collisions  

dscm-nu, dsmc-nu2,... #/s Collision rate 

dsmc-real-sum, dsmc-
real-sum2, ... 

# Internal variable used to compute DSMC collision count, stores cumulative 
number of real particles undergoing collisions 
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dsmc-count-sum, 
dsmc-count-sum2, ... 

# Internal variable used to compute DSMC collision count, stores cumulative 
number of MCC collisions 

 

VII.b) Boundary Data 
 

Name  Units Description 

VII.b.1) Material-Specific 

flux #/m2/s Total number of particles hitting the boundary per second, scaled by 
boundary area 

flux-normal #/m2/s Particle flux multiplied by the cosine angle between the incoming velocity 
vector and surface normal 

deprate kg/s Rate of mass depositing to the surface 

depflux kg/m2/s Deposition rate scaled by the boundary area 
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