

User’s Guide

Starfish

2D Plasma / Gas Simulation Program

Version 0.20

February 15th, 2019

Particle In Cell Consulting LLC

particleincell.com
info@particleincell.com

Particle In Cell Consulting LLC Starfish User’s Guide

 2

Contents
I. Introduction .. 4

I.a) License ... 4

I.b) Getting Started .. 4

I.c) Input File Structure ... 5

II. Numerical Model .. 5

III. Examples ... 6

III.a) Flow of plasma past a charged cylinder .. 6

III.b) Supersonic expansion of atmospheric gas to vacuum .. 19

IV. Extending Starfish-LE .. 23

V. Bugs and Future Work .. 24

VI. Command Reference .. 25

VI.a) General .. 25

VI.a.1) NOTE ... 25

VI.a.2) LOG .. 25

VI.a.3) RESTART .. 26

VI.a.4) STARFISH ... 26

VI.a.5) STOP .. 26

VI.a.6) TIME .. 26

VI.b) Input / Output ... 27

VI.b.1) ANIMATION ... 27

VI.b.2) AVERAGING ... 27

VI.b.3) LOAD_FIELD ... 27

VI.b.4) OUTPUT ... 28

VI.b.5) PARTICLE_TRACE ... 30

VI.b.6) STATS ... 30

VI.c) Materials ... 31

VI.c.1) MATERIALS .. 31

VI.c.2) MATERIAL .. 31

VI.d) Material Interactions .. 33

VI.d.1) MATERIAL_INTERACTIONS .. 33

VI.d.2) SURFACE_HIT .. 34

VI.d.3) DSMC ... 34

VI.d.4) MCC ... 34

VI.d.5) CHEMISTRY .. 35

Particle In Cell Consulting LLC Starfish User’s Guide

 3

VI.e) Boundaries .. 36

VI.e.1) BOUNDARIES ... 36

VI.e.2) BOUNDARY .. 37

VI.f) Domain .. 38

VI.f.1) DOMAIN .. 38

VI.f.2) MESH ... 38

VI.g) Sources .. 39

VI.g.1) SOURCES ... 39

VI.g.2) BOUNDARY_SOURCE... 39

VI.h) Solver... 41

VI.h.1) SOLVER .. 41

VII. Data Fields ... 42

VII.a) Mesh Data ... 43

VII.a.1) General .. 43

VII.a.2) Material-Specific (base.mat) ... 43

VII.a.3) MCC ... 43

VII.a.4) DSMC ... 43

VII.b) Boundary Data .. 44

VII.b.1) Material-Specific ... 44

VIII. References .. 44

Particle In Cell Consulting LLC Starfish User’s Guide

 4

I. Introduction

Starfish is a two-dimensional XY/RZ plasma and gas simulation code written in Java [1]. The code was developed with
generality in mind, allowing it to consider a wide range of gas dynamics problems. The current version mainly implements
functionality needed for simulations of low-density plasmas using the Particle In Cell Method (PIC) with MCC/DSMC
collisions. Rudimentary support for fluid modeling is also implemented and we are working on extending this functionality
as soon as possible. Starfish operates on structured 2D Cartesian or body fitted stretched meshes. Surface geometry is
included via linear or cubic splines. The code is easily extensible using plugins, as described later in this document.

Starfish consists of two version. The Light Edition (Starfish-LE) is the main code described in this document. It implements
numerical models needed to perform simple gas kinetics simulations. The binary and source code for this version can be
downloaded by visiting https://www.particleincell.com/starfish. The full version (Starfish-Full) implements various
proprietary models mainly for modeling ion sources and surface interactions. The full version is not publicly available.

I.a) License
Please review LICENSE included with the code. Your use of the code implies consent to the license agreement. In general,
you are allowed to use the code for any non-commercial purpose assuming the original copyright notice is preserved.

I.b) Getting Started
Although we started working on the GUI, a working version of GUI is not yet available. For now, Starfish is run from the
command line. You need to have a Java Run Time1 environment installed on your system. To use the code, navigate to the
directory containing the simulation input files. To run the code, type
java -jre <path_to_starfish-LE.jar>
For instance, if your starfish-LE.jar file is located in a folder “codes/starfish-LE” in your home directory, and if the case you
wanted to run was located in a subfolder “dat/tutorial/step1”, you would do the following:
> cd starfish-LE
> cd dat/tutorial/step1
> java -jar ../../../starfish-LE.jar

Figure 1. Starfish running on Microsoft Windows in Windows PowerShell (left) and Cygwin (right)

1 Java JRE can be downloaded from https://java.com/en/download/

https://www.particleincell.com/starfish

Particle In Cell Consulting LLC Starfish User’s Guide

 5

Figure 1 shows Starfish running on Microsoft Windows with the Windows Powershell (an update to the command promp)
and the Linux emulator Cygwin. Note, we do not recommend running large Starfish cases from within Cygwin. At least as
of this writing, Cygwin does not expose all CPU cores to the running processes and thus running Starfish from within
Cygwin will result in the code running in serial.

I.c) Input File Structure
When Starfish launches, it looks for a file called starfish.xml located in the current directory. This is an XML file containing
multiple tags in the format
<simulation>
<tag>...</tag>
<tag>...</tag>
</simulation>

Any text enclosed with <!-- and --> is considered a comment. For instance:
<!-- this is a comment -->
<tag> ... </tag>

Each “tag” corresponds to a Starfish command. The full listing of available commands is given in Section VI.

II. Numerical Model

Starfish is based on the concept that in gas simulations, we are interested in simulating the evolution of density, velocity,
and temperature of one or more gaseous materials. In general, any time dependent gas simulation can be reduced to
the following pseudo code:

for (it in num_time_steps):

 for (material in list_of_materials):

 material.integrateByDt()

The “integrateByDt()” function simply advances the material bulk properties in time by a simulation time step Δ𝑡. What
this function actually does is specific on the type of material and the type of simulation we are interest in running. For
instance, for low density plasmas, this step may involve advancing simulation macroparticles by Δ𝑡 using the Particle In
Cell (PIC) method [2]. For dense neutral gases, a Navier-Stokes solver may be used instead. The Starfish-LE version
implements the PIC method as well as a rudimentary advection-diffusion solver. Additional material types may be added
in the future. In the PIC method, the gas is represented by a number of simulation macroparticles. Each macroparticle
corresponds to some 𝑤𝑠𝑝 number of real molecules, ions, or electrons. This approach is needed, since it is not

computationally feasible to track every single real molecule outside some limiting low-density, tiny domain cases. Despite
Starfish being a 2D code, each particle retains three components of position and velocity. The out-of-plane position is used
to rotate the particle back to the computational slice in axisymmetric simulations. Particle positions in the simulation plane
are then used to compute number density of material “i” 𝑛𝑖 by scattering particle positions to a computational grid. In

case of charged simulations, we next compute charge density 𝜌 = ∑ 𝑛𝑖
𝑚𝑎𝑡𝑠
𝑖 . Poisson’s equation, 𝜖0∇

2𝜙 = −𝜌 is then used

to obtain plasma potential, which is in turn used to compute the electric field, 𝐸⃗ = −∇𝜙. Particle velocities are updated

from Lorentz force, 𝐹 = 𝑞(𝐸⃗ + 𝑣 × 𝐵⃗). Starfish uses the Leapfrog integrator with the Boris scheme used for the velocity
update.

Particle In Cell Consulting LLC Starfish User’s Guide

 6

III. Examples

III.a) Flow of plasma past a charged cylinder
We demonstrate the use of Starfish by summarizing a tutorial that was previously posted to the PIC-C blog2. In this
simulation we will investigate the flow of plasma over an infinitely long charged cylinder.

Step 1: Computational Domain and Initial Field

We start the tutorial by specifying the computational domain, loading the problem geometry, solving plasma potential,
and outputting results. No particles are introduced yet. The output that we will generate is shown in Figure 2.

Figure 2. The initial plasma potential on a 2D mesh and as a slice along Y=0.

As noted earlier, Starfish looks for a file named starfish.xml located in the current directory. This file contains all the
commands that drive the simulation. The file used to produce the above output is shown below:

<simulation>

<note>Starfish Tutorial: Part 1</note>

<!-- load input files -->

<load>domain.xml</load>

<load>materials.xml</load>

<load>boundaries.xml</load>

<!-- set potential solver -->

<solver type="poisson">

<n0>1e12</n0>

<Te0>1.5</Te0>

<phi0>0</phi0>

<max_it>1e4</max_it>

</solver>

<!-- set time parameters -->

<time>

<num_it>1</num_it>

<dt>1e-6</dt>

2 https://www.particleincell.com/2012/starfish-tutorial-part1/

Particle In Cell Consulting LLC Starfish User’s Guide

 7

</time>

<!-- run simulation -->

<starfish />

<!-- save results -->

<output type="2D" file_name="field.dat" format="tecplot">

<scalars>phi, efi, efj, rho, nd.O+</scalars>

</output>

<output type="1D" file_name="profile.dat" format="tecplot">

<mesh>mesh1</mesh>

<index>J=0</index>

<scalars>phi, efi, efj, rho, nd.o+</scalars>

</output>

<output type="boundaries" file_name="boundaries.dat" format="tecplot" />

</simulation>

As you can see, this file is an XML document and it contains a number of elements nested within the parent <simulation>
element. We will now review these commands in detail

Line 2: <note>

The input file starts with the note command, which simply outputs the specified message to the screen and the log file.
This is a convenient way to remind you what simulation case the code is running.

Lines 5-7: <load>

The file next contains three load commands. These commands load the specified file and place it into the XML tree at the
current position. They are used to split a single input file into more manageable smaller chunks. This command is
particularly handy for data reuse, for instance, to reuse commonly used material definitions and material interaction
tables. We will go through the content of these in more detail below.

Lines 10-15: <solver>

Lines 10 through 15 contain the solver command. This command is used to specify the details of the solver that will be
used in the simulation. Here we use the non-linear Poisson solver. The parameters specify the reference values for the
Boltzmann electron model, as well as the maximum number of iterations for the linear solver. Other parameters can also
be set, such as the tolerance, and the settings for the non-linear NR solver, but here we just use the defaults. You can see
the value of these by looking in the log file.

Lines 18-21: <time>

We next set time control parameters. We tell the code to run for a total of zero iterations. We also specify the time step
size, which in this case is ignored. Running for zero iterations instructs the code to solve the initial field, but it will not
attempt to inject particles (assuming sources were defined).

Particle In Cell Consulting LLC Starfish User’s Guide

 8

Line 24: <starfish>
On line 24 we finally start the simulation with the starfish command. All commands before this one were simply specifying
the inputs, now these are used to compute the solution. The input file parser will wait for the solver to finish before
moving to the next command.

Lines 27-37: <output>
By itself, the starfish command does not produce any useful output. The computed results are stored internally in memory
and must be saved to the output file for post-processing. This is done with the output command. Three types of output
are supported: 2D, 1D, and Boundaries. The first saves data on the 2D computational mesh. The 1D type is similar but it
saves only a subset of the mesh, one with a fixed I or J coordinate. The Boundaries output saves data along the simulation
geometry. This plot is useful for outputting surface-type parameters such as erosion rate or surface flux. Here we use it to
simply save the loaded object geometry.

Domain File (domain.xml)
We now return to line 5, and consider the domain specification. The domain file, domain.xml, contains the following:

<domain type="xy">

<mesh type="uniform" name="mesh1">

<origin>-0.15,0</origin>

<spacing>5e-3, 5e-3</spacing>

<nodes>70, 40</nodes>

<mesh-bc wall="left" type="dirichlet" value="0" />

<mesh-bc wall="bottom" type="symmetry"/>

</mesh>

</domain>

One of the unique features of Starfish is its ability to load an arbitrary number of computational meshes (note this
functionality is broken in 0.18 but is being worked on). These meshes can be either rectilinear or body fitted elliptic
meshes. In this example, we specify just a single rectilinear mesh. We first tell the code that our geometry is in the
Cartesian (XY) coordinate system. Starfish also supports axisymmetric (RZ) domains. The uniform Cartesian mesh is
specified by providing the location of the origin, node spacing, and the number of nodes in the two coordinate directions.
We also apply a mesh boundary condition by setting the left wall to a fixed 0V potential. This is needed in order to create
a potential gradient between the ambient free space and the sphere. We also let the bottom face be symmetric since we
are simulating only one half of the computational domain.

Materials definition (materials.xml)
Starfish does not contain any build database of materials or material interactions. This information must be provided by
the user. Since we don’t have any particles in this first step, we don’t yet concern ourselves with the interactions, however,
we need to define the materials that will be present in the simulation. The materials file contains the following:

<!-- materials file -->

<materials>

<material name="O+" type="kinetic">

<molwt>16</molwt>

<charge>1</charge>

<spwt>5e9</spwt>

<init>nd_back=1e4</init>

</material>

Particle In Cell Consulting LLC Starfish User’s Guide

 9

<material name="SS" type="solid">

<molwt>52.3</molwt>

</material>

</materials>

As you can see, we defined two materials: atomic oxygen ions and stainless steel. The atomic oxygen ions are kinetic. This
material will be modeled with simulation particles within the particle in cell method. Starfish also supports fluid materials,
which use Navier Stokes or MHD equations to propagate densities, as well as solid materials, which don’t change
throughout the simulation. The parameters needed to specify a material will depend greatly on its type. For the kinetic
oxygen ions, we specify the particle specific weight, the number of real particles each simulation macroparticle represents.
This number will influence the number of simulation particles in the simulation. We also specify the background density.
A non-zero background density is required whenever the Boltzmann electron model is used due to the presence of the
logarithmic term.

Geometry file (boundaries.xml)
The final piece is the geometry file boundaries.xml, which is listed below:

<boundaries>

<boundary name="cylinder" type="solid" value="-100" reverse="false">

<material>SS</material>

<path>M 0.05, 0 L 0.0475528, -0.0154508 0.0404508, -0.0293893 0.0293893, -0.0404508

0.0154508, -0.0475528 -9.18E-18, -0.05 -0.0154508, -0.0475528 -0.0293893, -0.0404508 -

0.0404508, -0.0293893 -0.0475528, -0.0154508 -0.05, 6.12E-18 -0.0475528, 0.0154508 -

0.0404508, 0.0293893 -0.0293893, 0.0404508 -0.0154508, 0.0475528 3.06E-18, 0.05

0.0154508, 0.0475528 0.0293893, 0.0404508 0.0404508, 0.0293893 0.0475528, 0.0154508

0.05, 0</path>

</boundary>

</boundaries>

Currently, simulation objects are specified via linear or cubic Bezier splines. It is possible that a future version of the code
will include elementary building-block shapes and support for other file formats. The boundary contains a child field called
path which provides the geometrical information about the spline. The syntax is similar to the SVG format, with the
exception that cubic splines are specified by simply listing the points through which the spline will pass and the control
knot points are omitted. Here we use linear components (L) to trace a circle. The ordering of the nodes matters, since the
code will use the ordering to figure out which side of the segment is “internal” to the object. The internal side is assumed
to lie on the “left”, hence the circle segments move counter-clockwise. This path was created with the included
MakeCircle.java program.

Mesh Generation
Finally, a quick note about mesh generation. Right now, Starfish supports just the “staircase” or “sugarcube” method. The
code simply uses the provided surface boundary to figure out which mesh nodes are internal, and these nodes are given
the boundary condition of the surface spline. A more detailed method of using cut cells is still in development. You can
see in Figure 3 below the staircasing effect. This plot is generated by visualizing the “type” data field. The nodes in red as
flagged as internal and the ones in blue comprise the gas domain. It is important to check that node location was set
correctly before launching the simulation.

Particle In Cell Consulting LLC Starfish User’s Guide

 10

Figure 3. Internal nodes (in red) set with the sugarcubing algorithm

Step 2: Particles and Animation

We now add particles to our simulation. In order to add particles, we need to specify sources. Starfish supports two types
of sources: volume and surface. Here we will use the latter. Surface sources create particles along geometry (boundary)
splines according to a prescribed velocity distribution function (VDF) and the surface normal vector. In this example, we
want the entire left domain boundary to act as a source injecting particles with uniform velocity. This setup then
approximates the movement of the cylinder through undisturbed plasma, with the frame of reference moving with the
cylinder. First, we need to add a new boundary to the boundaries.xml file:

<boundaries>

<boundary name="cylinder" type="solid" value="-1" reverse="false">

<material>SS</material>

<path>...</path>

</path>

</boundary>

<boundary name="inlet" type="virtual" >

<path>M -0.15,0.2 L -0.15, 0</path>

</boundary>

</boundaries>

We named this spline “inlet” and it was given a type of virtual. This classification means that the boundary will not be used
in generating the mesh intersections nor will it be seen by the particles. It is available for use by sources and also by probes
(but more about probes later). This spline is simply a linear segment from the bottom left to the top left corner of the
computation mesh. As you can see, it is 0.2m long.

To add the source, we add the following command to starfish.xml (this command could also be placed in an external file
and loaded with the <load> command):

<!-- set sources -->

<sources>

<boundary_source name="space">

<type>uniform</type>

<material>O+</material>

<boundary>inlet</boundary>

<mdot>5.313e-11</mdot>

Particle In Cell Consulting LLC Starfish User’s Guide

 11

<v_drift>10000</v_drift>

</boundary_source>

</sources>

Here you can see how the boundary comes into play. The source is given type uniform, which means that it produces
particles with velocity equal to v_drift. The particles will be moving in the direction of the surface normal of the associated
boundary, the inlet. If the boundary consisted of a number of individual splines, the particles would be moving according
to the local normal. This source will generate O+ particles at mass flow rate of 5.313e-11 kg/s. You may be wondering how
this number was determined. We want our plasma density in the free space to be 1012 m-3 to correspond with the
potential solver electron model settings. The mass flow rate is given by the following expression:

𝑚̇ = 𝑚𝑛𝑢𝐴
where the terms on the RHS correspond to the atomic mass (16 amu, per materials.xml file), number density (1e12 m-3),
velocity (10,000 m/s), and source area (0.2 m2). In the Cartesian (XY) mode, the area is equal to the spline length, since
unit depth is assumed. This expression gives us the value that is used in the simulation. Also, since we now have particles,
we need to run for enough time steps to reach the steady state. In this case, 400 time steps will do the trick. We modify
the time command as follows:

<!-- set time parameters -->

<time>

<num_it>400</num_it>

<dt>2e-7</dt>

</time>

After you run the simulation, we obtain results like those visualized in Figure 4 and Figure 5 . We can see that a wake forms
behind the cylinder. We can also clearly see the “reflection” of ions at the centerline, the line of symmetry. In reality, this
reflection corresponds to the influx of particles from the opposite half of the simulation. This is best seen in the plot of
the vertical velocity.

Figure 4. Ion density and ion vertical velocity

Particle In Cell Consulting LLC Starfish User’s Guide

 12

Figure 5. Plasma potential for flow over a cylinder

These results show the final solution at the end of the simulation. These results correspond to the instantaneous steady
state results. But what if we wanted to learn more about how the solution progressed? Or what if we had a time-
dependent injection source? This is where animations come in. Animations direct the simulation to save results at a
prescribed frequency during the course of the computation. Animations are specified by wrapping the standard output
command in an animation command. See the website for a visualization of this data.

<!-- save animation -->

<animation start_it="1" frequency="20">

<output type="2D" file_name="field_ani.dat" format="tecplot">

<scalars>phi,rho, nd.O+,u.O+,v.O+</scalars>

</output>

</animation>

Step 3: Surface Interactions

In the previous step, ions that collided with the cylinder were simply removed from the simulation. This is the default
surface interaction that occurs if no other model is defined. It is only partially realistic. In reality, when low energy ions
collide with a surface, they tend to pick up an electron from the surface and recombine into a neutral. In many plasma
processes, surface recombination is the dominant plasma loss mechanism. Recombination in the gas itself is a three body
process that is negligible at densities below 1e19 m-3. Although significantly lower than atmospheric pressure, this density
is still several orders of magnitude higher than densities present in common space plasma applications. For instance, the
ambient plasma density at the Low Earth Orbit is around 1e12 m-3. So while it is true that an ion “disappears” from the
simulation on surface impact, the prior simulation does not conserve mass since the reflected neutral is not added.

We now add surface recombination to our model. This is done via Starfish’s interactions module. This module handles
interactions between all materials, either kinetic (handled by the PIC method), fluid (handled by the CFD/MHD solvers),
or solid (making up the surfaces). We first create a new text file in the simulation directory called interactions.xml.
The content of this file is

<!-- material interactions file -->

<material_interactions>

<surface_hit source="O+" target="SS">

<product>O</product>

<model>cosine</model>

<c_accom>0.5</c_accom>

<c_rest>0.9</c_rest>

</surface_hit>

</material_interactions>

Particle In Cell Consulting LLC Starfish User’s Guide

 13

and we load this file by adding

<load>interactions.xml</load>

to starfish.xml. We also need to add a new material to the database – remember, Starfish does not contain any built-in
materials. We add the following to materials.xml:

<material name="O" type="kinetic">

<molwt>16</molwt>

<charge>0</charge>

<spwt>2e5</spwt>

</material>

Each material interaction involves at least three participants: source, target, and product. The distinction between sources
and products becomes blurry when dealing with collisions. However, they are clearly distinct when dealing with surface
interactions. In this case, the source is the “flying” component. The target is the material that the source hits – the material
from which the surface is made of. The product is the material the source turns into after undergoing the impact. In this
case, we have told the code to turn O+ ions into O atoms after colliding with Stainless Steel surfaces.

When you look in the materials file, you will see that the specific weight of the oxygen atoms (O), 2e5, differs from the
specific weight of the oxygen ions (O+), 5e5. The code takes this into account, and creates, on average, 2.5 atom particles
per each impacting ion. You can test this out yourself by changing the value and seeing the number of particles change.
The actual density of oxygen atoms will however stay the same, but the data will become noisier as the number of particles
is reduced. This can be seen below in Figure 1.

Figure 6. Density of neutrals from surface recombination of impacting ions. Images compare the effect of specific weight on results:
2e5 (left), and 2e7 (right). Instantaneous results.

Material Interaction Model
So far we have only told the code to turn O+ into O. However, we have yet to specify how the new particles will leave the
surface. This is done via the model field. Even relatively smooth surface will contain irregularities on the atomic scale.
Furthermore, in many cases, incoming molecules do not bounce off the surface like a tennis ball. Instead, they
momentarily settle on the surface and then they are re-emitted in a direction that tends to follow Lambert’s cosine law.
The cosine model models this behavior. The angle of the emitted particle will scale proportionally to the cosine of angle
between the velocity vector and the surface normal. Some additional models that are available include specular and
diffuse (random) reflection. The 𝑐𝑟𝑒𝑠𝑡 and 𝑐𝑎𝑐𝑐𝑜𝑚 fields control the post impact velocity. The coefficient of restitution,
𝑐𝑟𝑒𝑠𝑡 = 𝑣2/𝑣1 is primarily applicable to finite-sized dust particles and for molecular simulations we will usually keep it at
1. The coefficient of thermal accommodation specifies the fraction of incoming particles that will completely forget their

Particle In Cell Consulting LLC Starfish User’s Guide

 14

incoming velocity and will instead come off with a velocity corresponding to the thermal velocity of the surface. The overall
algorithm is as follows:

v2 = v1*c_rest /*post impact velocity*/

R = random(); /*pick a random number in [0,1)*/

if (R<c_accom)

 v2 = v_th*sampleMaxwellian();

/*create particle with velocity magnitude v2*/

Complex Interaction Types
In the above example, all incoming ions turned into neutrals and were re-emitted. However, what if we wanted to model
a situation where a fraction of particles stick to the surface, another fraction is reflected specularly, and only the final
fraction is emitted according to the cosine law? This is quite easy in Starfish. Starfish allows you to define multiple
interaction types with a prescribed probability of occurrence. As an example, let’s consider a more complex
interactions file:

<!-- material interactions file -->

<material_interactions>

<surface_hit source="O+" target="SS">

<product>O</product>

<model>cosine</model>

<prob>0.4</prob>

<c_accom>0.5</c_accom>

<c_rest>0.9</c_rest>

</surface_hit>

<surface_hit source="O+" target="SS">

<product>O</product>

<model>specular</model>

<prob>0.2</prob>

<c_accom>0</c_accom>

<c_rest>1.0</c_rest>

</surface_hit>

</material_interactions>

We have now specified two surface_hit fields. In addition, we added a new field called prob. This field gives the probability
for each model. As you can see, these two probabilities add up to a value less than 1.0. This is OK, the remaining particles
will be handled by default handler, one that absorbs incoming particles.

Step 4: Steady State, Surface Flux, and Data Averaging

We next learn how to export surface properties, such as surface flux and deposition rate. We will also set up averaging to
obtain averaged field properties. In the previous step, we added surface recombination of ions into neutrals. The more
complex surface model had a fraction of ions stick to the cylinder. Now let’s assume that we want to determine the rate
with which ions are arriving at the object, and also how much stuff is sticking to it. These are just two examples of surface
(boundary) properties that can be exported from the simulation.

Particle In Cell Consulting LLC Starfish User’s Guide

 15

But before we start discussing surface flux, we need to introduce the concept of steady state. Many computer simulation
methods, especially ones based on kinetic approaches, such as PIC and DSMC, work by integrating simulation particles
forward in time from some known initial state. The simulation will initially pass through a transient state in which the
results are constantly changing and are not indicative of the final steady solution. As such, we need to wait until steady
state to start collection cumulative data. Starfish automatically waits until steady state before starting to collect properties
such as surface flux. This is an important point to note if you want to export cumulative data. By default, the steady state
is determined automatically. But you can also override it. As an example, here is a time command which instructs the code
to assume that steady state is reached at time step 100.

<time>

<num_it>500</num_it>

<dt>5e-7</dt>

<steady_state>100</steady_state>

</time>

One thing that occurs once steady state is reached is that the code will start collecting information about particles hitting
surfaces. This includes properties such as flux of individual materials, as well as the mass deposition rate, corresponding
to the particles that stick (are absorbed) to the surface. We can output these properties by adding list of variables to the
output statement. The result is shown in Figure 7.

<output type="boundaries" file_name="boundaries.dat" format="tecplot">

<scalars>flux.o+, flux-normal.o+, depflux.o+, flux, deprate, depflux</scalars>

</output>

Figure 7. Surface flux saved as surface (boundary) data.

Data Averaging
Since results from kinetic codes are quite noisy, it is a good practice to average results over several time steps to get both
smoother plots, and to eliminate outlier data arising from statistical noise. This is done in Starfish with the averaging
command. The syntax is

<!-- setup averaging -->

<averaging frequency="2">

<variables>phi, nd.o+, nd.o</variables>

Particle In Cell Consulting LLC Starfish User’s Guide

 16

</averaging>

The averaging starts automatically at steady state, and new data will be added every 2 time steps. The variables lines lists
the variables to be averaged. Since averaging data adds a computational overhead, the code averages just the variables
that are specified here. These averaged values are then exported using the standard output command, with the caveat
that the averaged versions will have the base ending in “-ave”. For instance,

<!-- save results -->

<output type="2D" file_name="field.dat" format="tecplot">

<scalars>phi, phi-ave, rho, nd.o+, nd-ave.o+, u.o+, v.o+, nd.o, nd-ave.o, u.o,

v.o</scalars>

</output>

This command will output to a file named “field.dat” the following variables: instantaneous potential, averaged potential,
instantaneous ion density, averaged ion density, instantaneous neutral density, and averaged neutral density. Figure 8
below shows the differences.

Figure 8. Comparison of instantaneous (left) and averaged (right) neutral densities.

Step 5: MCC Collisions and Chemical Reactions

While previously we discussed the gas/surface interface, we have not yet considered gas interactions. The neutrals and
ions currently pass right through without “seeing” each other. Starfish supports three types of material interactions:
chemical reactions, MCC, and DSMC. The easiest way to differentiate between these is to think of them as fluid-fluid,
particle-fluid, and particle-particle events, respectively. Chemical reactions operate solely with the density and
temperature fields and are applicable to models described by a rate equation. They are useful for modeling production or
destruction of material in processes such as ionization or recombination.

MCC, or Monte Carlo Collisions, are kinetic-fluid interactions. The source material collides with a target cloud. The number
density of the target at the particle position is used to determine the collision probability. If the collision occurs, only the
source particle is modified. The target is not affected by the collision. As such, momentum is not conserved. MCC is suitable
for cases when the target material is sufficiently more dense than the source, such as when a rarefied ion beam interacts
with a dense neutral cloud via the Charge Exchange (CEX) collision. Finally, DSMC (Direct Simulation Monte Carlo) is a

Particle In Cell Consulting LLC Starfish User’s Guide

 17

kinetic-kinetic collision process. This method collides particles with other particles in the simulation cell. Both energy and
momentum are conserved. This method is suitable for modeling collisions in like gases, such as to model momentum
exchange (MEX) collisions in the ion gas. Starfish implements the No Time Counter (NTC) method of Bird [3]. DSMC is the
most computationally demanding of these three methods. Material interactions are specified in the interactions file which
you have already seen before. We used this file previously to add surface recombination. We modify the interactions file
as follows:

<material_interactions>

...

<!--

<chemistry model="ionization">

<sources>O,e-</sources>

<products>iO+,2*e-</products>

</chemistry> -->

<mcc model="cex">

<source>O+</source>

<target>O</target>

<sigma>inv</sigma>

<sigma_coeffs>1e-16</sigma_coeffs>

</mcc>

</material_interactions>

The chemistry interaction listed here within a comment illustrates how we go about modeling the ionization reaction

𝑂 + 𝑒− → 𝑂+ + 2𝑒−
We can write this process as follows:

𝑑𝑛𝑂+ = +𝑘𝑛𝑂𝑛𝑒−𝑑𝑡
𝑑𝑛𝑂 = −𝑘𝑛𝑂+𝑛𝑒−𝑑𝑡

ignoring electron density change. Here “k” is the ionization rate (which is typically function of the electron temperature)
and the two “n” correspond to the densities of the atoms and electrons. An example of this interaction is shown in Figure
9. We see that ions are created only in the region containing a neutral population. Additional details about the chemistry
model are available online3.

Figure 9. Ions created by the ionization chemistry interaction

3 https://www.particleincell.com/2012/starfish-tutorial-part5/

Particle In Cell Consulting LLC Starfish User’s Guide

 18

MCC
Let’s now move onto MCC. Just as in the case of the chemical reaction, we specify the source and target, as well as the
collision model. In this case, we’ll be using the CEX handler. This handler models the electron exchange between a fast ion
and a slow neutral resulting in a fast neutral and a slow ion,

𝑂𝑓𝑎𝑠𝑡
+ + 𝑂𝑠𝑙𝑜𝑤 → 𝑂𝑓𝑎𝑠𝑡 + 𝑂𝑠𝑙𝑜𝑤

+

But since this is MCC, we don’t actually modify the neutrals. Instead, the neutrals are used to compute the collision
probability following 𝑃 = 1 − exp(−𝑛𝑛𝑔𝜎𝛥𝑡), where 𝑛𝑛 is the neutral density, 𝑔 is the relative velocity between the ion
and the neutral (with the neutral assumed to be stationary), and 𝜎 is the collision cross-section. The sigma model is
typically a function of relative velocity, with a number of models existing to describe different collision events. A classic
model for modeling CEX is the model of Rapp and Francis. However here, for simplicity, we use a constant cross-section.
But even with this relatively large value, collisions are still going to be a very rare event due to the low gas densities. So
just to demonstrate this effect, let’s go ahead and specify a dense background neutral environment. In the materials
file, let’s modify the oxygen atom by adding an init tag,
<material name="O" type="kinetic">

<molwt>16</molwt>

<charge>0</charge>

<spwt>2e5</spwt>

<init>nd_back=2e18</init>

</material>

This background density will be added to any density from the actual kinetic particles. We can also turn off the potential
solver. One way is to replace the Poisson solver with a constant electric field model with zero components,
<!-- set zero electric field -->

<solver type="constant-ef">

<comps>0,0</comps>

</solver>

This will allow us to see the effect of collisions. The source loads a cold ion beam, and hence, in the absence of forces and
collisions, the ions should continue moving in a straight line. Collisions will scatter the motion. You can see this comparison
for yourself below in Figure 10. You can see that once the collisions are enabled, we both start seeing diffusion of ions into
the wake behind the cylinder, and also the overall density of ions increases. This is due to the presence of many slow ions
that are taking a long time to leave the simulation.

Figure 10. Ion density without (left) and with (right) CEX collisions enabled

Particle In Cell Consulting LLC Starfish User’s Guide

 19

III.b) Supersonic expansion of atmospheric gas to vacuum
We now consider a different example motivated by a paper of Jugroot [4]. The authors were interested in simulating
nitrogen gas expanding from a 750 Torr (basically atmospheric) environment to a 0.5 Torr tank through a 0.75mm diameter
orifice. This is an axisymmetric problem. With the orifice exit plane centered at (0,0), their simulation domain extended
to 25 mm in the axial direction and 11 mm in the radial direction. They didn’t specify what kind of mesh was used but
listed the typical number of cells as 50,000. We set up the problem with a uniform Cartesian mesh with 1e-4 node spacing
and 27,500 cells in the low pressure region. To keep the orifice boundary aligned with a mesh edge, the orifice diameter
was increased slightly to 0.8mm.

Figure 11. Simulation setup for the supersonic jet expansion example.

The setup for this problem is visualized in Figure 1 above. We will use ambient sources to maintain constant pressure
along the red and orange boundaries. This source simply creates particles while pressure in the neighboring cell is below
some user given threshold. Particles are sampled as thermal gas but can be given optional drift velocity. Besides
maintaining pressure, the source can also maintain density. These two properties are related by the ideal gas law, . The
black boundary is a solid wall diffusely reflecting incident molecules. Temperature of this wall will be set to the same
temperature as the injected gas. Figure 1 shows results after 200 time steps. As you can see, we start with an initially
empty domain. I experimented with prefilling the low density region with the 0.5 Torr gas but found it to make no
difference.

Input Files

We will now go through the input files needed by the simulation. You will find them in the tutorial/dsmc/jet
directory. We start with the main starfish.xml file. As you can see, it’s quite short. We tell the simulation to run for
70,000 time steps, with steady state forced at time step 20,000. This controls when averaging begins. The automatic steady
state checking code is not robust, and I wanted to make sure we are truly at steady state when we start collecting data. I
also included optional restart code. One other thing you may note is a lack of code specifying averaging. As of v0.16,
velocities, density, and temperature are automatically averaged for kinetic species.

<simulation>

<note>DSMC gas expansion</note>

<log level="Log" />

<!-- load input files -->

<load>domain.xml</load>

<load>materials.xml</load>

<load>boundaries.xml</load>

Particle In Cell Consulting LLC Starfish User’s Guide

 20

<load>interactions.xml</load>

<load>sources.xml</load>

<!-- set time parameters -->

<time>

<num_it>70000</num_it>

<dt>1e-8</dt>

<steady_state>20000</steady_state>

</time>

<!-- run simulation -->

<starfish/>

<!-- save results -->

<output type="2D" file_name="field.vts" format="vtk">

<scalars>nodevol, p, nd-ave.n2, t.n2, t1.n2, t2.n2, t3.n2, nu, mpc.n2, dsmc-

count</scalars>

<vectors>u-ave.n2, v-ave.n2, w-ave.n2</vectors>

</output>

<output type="boundaries" file_name="boundaries.vtp" format="vtk">

<scalars>flux.n2, flux-normal.n2</scalars>

</output>

</simulation>

The variables that we are outputting include node volume, total pressure, average number density of nitrogen, total
temperature, temperature components for the three spatial directions, average velocity components, collision rate,
average number of macroparticles per cell, and average number of collisions per cell. All this data is saved as point data.
In the future, I will make the output algorithm more user friendly by having it save velocity components directly as
vectors.

The domain.xml file specifies the uniform mesh used for particle push, collisions, and sampling:
<domain type="zr">

<mesh type="uniform" name="mesh">

<origin>-5e-4,0</origin>

<spacing>1.0e-4, 1.0e-4</spacing>

<nodes>256, 111</nodes>

<mesh-bc wall="bottom" type="symmetry"/>

</mesh>

</domain>

It is not necessary to specify symmetry on 𝑟 = 0 the edge for an axisymmetric code (domain type="zr") but I left it here
in case you want the run the code in the xy mode (domain type="xy")

The materials.xml file lists known materials used for specifying boundaries and gas particles,

<materials>

<material name="N2" type="kinetic">

<molwt>28</molwt>

<charge>0</charge>

<spwt>1e11</spwt>

Particle In Cell Consulting LLC Starfish User’s Guide

 21

<ref_temp>275</ref_temp>;

<visc_temp_index>0.74</visc_temp_index>

<vss_alpha>1.00</vss_alpha> <!--1.36-->

<diam>4.17e-10</diam>

</material>

<material name="SS" type="solid">

<molwt>52.3</molwt>

<density>8000</density>

</material>

</materials>

The file lists two materials: nitrogen molecules and stainless steel for surfaces. One important thing to note here is that
for a kinetic material (flying gas particles) we also specify various DSMC parameters. These values for nitrogen come
from Tables A1, A2 and A3 in Appendix A of Bird’s 2003 book. The vss_alpha can be used to turn on the Variable Soft
Sphere (VSS) collision model. Value of 1 results in the faster Variable Hard Sphere (VHS) being used. I ran few cases and
did not observe any significant differences between the two and hence we’ll be using VHS in this example. You can
speed up the code by using a higher specific weight with the risk of adding numerical error due to not having enough
particles per cell.

The boundaries.xml file specifies surface boundaries in an SVG format. You could generate the segments for complex
geometries using “path to SVG” in GIMP or Inkscape, but for a simple geometry, you can just make the file by hand,

<boundaries>

<boundary name="wall" type="solid">

<material>SS</material>

<path>M 0, 11e-3 L 0,8e-4 -1e-3,8e-4</path>

<temp>288</temp>

</boundary>

<boundary name="inlet" type="solid">

<material>SS</material>

<path>M wall:last L -1e-3,0</path>

<temp>288</temp>

</boundary>

<boundary name="ambient" type="virtual">

<path>M 25e-3,0 L 25e-3,11e-3 0,11e-3</path>

</boundary>

</boundaries>

The “ambient” boundary is marked as virtual. This allows this boundary to be used when specifying particle sources but
is subsequently invisible to particles during the push. Although “inlet” is marked as solid, it doesn’t seem to make a
difference. A virtual inlet means that a particle moving back to the tank is removed, and subsequently new particle is
generated by the ambient source. However, since both use the same algorithm to sample a half Maxwellian, the result is
the same.

Particles sources are listed in the sources.xml file,

Particle In Cell Consulting LLC Starfish User’s Guide

 22

<sources>

<!--high pressure tank-->

<boundary_source name="inlet_750Torr" type="ambient">

<enforce>pressure</enforce>

<material>N2</material>

<boundary>inlet</boundary>

<drift_velocity>0,0,0</drift_velocity>

<temperature>288</temperature>

<total_pressure>1.0e5</total_pressure>

</boundary_source>

<!--ambient environment-->

<boundary_source name="amb_0.5Torr" type="ambient">

<enforce>pressure</enforce>

<material>N2</material>

<boundary>ambient</boundary>

<drift_velocity>0,0,0</drift_velocity>

<temperature>288.0</temperature>

<total_pressure>66.66</total_pressure>

</boundary_source>

</sources>

As you can see, we are specifying two sources of type ambient. This source attempts to maintain constant density,
pressure, or partial pressure (as given by the enforce parameter) in cells along the given boundary. Particles are sampled
from a half-Maxwellian at the given temperature (288K). The first source generates particles for the 750 Torr reservoir,
while the second source generates particles to fill the low pressure tank. Pressures are given in Pascal, hence values in
Torr need to be multiplied by 133.322.

Finally, we have interactions.xml file, which specifies particle-surface and particle-particle interactions,

<material_interactions>

<surface_hit source="N2" target="SS">

<product>N2</product>

<model>diffuse</model>

<prob>1.0</prob>

</surface_hit>

<dsmc model="elastic">

<pair>N2,N2</pair>

<sigma>Bird463</sigma>

</dsmc>

</material_interactions>

This file tells the simulation that a nitrogen molecule hitting a stainless steel surface should reflect diffusely. Collisions
between nitrogen molecules are handled with DSMC, with the collision cross-section given by Equation 4.63 in [3].

Results

Once the simulation finishes, you will have a file called field.vts which you can visualize using Paraview, Figure 12
The online article discusses some steps for visualizing this file. Figure 13 shows the gas number density, pressure, and
temperature. We can clearly see the formation of a the triple point and a Mach disc.

Particle In Cell Consulting LLC Starfish User’s Guide

 23

Figure 12. Mach number visualized in Paraview with streamlines added

Figure 13. Number density, pressure, and temperature

IV. Extending Starfish-LE

The core Starfish-LE code can be easily extended using plugins. To do so, create a new project inheriting starfish-LE.jar. In
your project, define a new main function which initializes an ArrayList of classes inherited from Plugin. Then instantiate a
new Starfish object and call its start function with this list. This is in fact demonstrated in Starfish-LE default main which
uses CollisionsPlugin as a demo.

Particle In Cell Consulting LLC Starfish User’s Guide

 24

public static void main(String args[])

{

 /*demo of starting Starfish with plugins*/

 ArrayList<Plugin> plugins = new ArrayList<Plugin>();

 plugins.add(new CollisionsPlugin());

 /*make a new instance*/

 new Starfish().start(args, plugins);

}

Each command that can be called from the XML input file corresponds to an object derived from RunnableModule. The
code begins by registering known modules such as “time”, “starfish”, “output” and so on. Next, the register method is
called on each provided plugin:

/*register modules*/

RegisterModules();

if (plugins!=null)

 for (Plugin plugin:plugins)

 plugin.register();

Withing this register method you can add whatever code is needed to extend the code capabilities. For instance, the
Collisions plugin registers additional interaction types and a collision cross-section as:

public void register()

{

 /*add new interactions*/

 InteractionsModule.registerInteraction("DSMC",DSMC.DSMCFactory);

 InteractionsModule.registerInteraction("MCC", MCC.MCCFactory);

 /*add cross-section*/

 InteractionsModule.registerSigma("Bird463",SigmaPlus.makeSigmaBird463);

}

Please do not hesitate to contact us for more specific information.

V. Bugs and Future Work

Please report any bugs or feature requests to info@particleincell.com.

Current work on Starfish includes the following:
1. Re-enabling of multi-mesh support
2. Addition of automatic adaptive mesh refinement
3. Improvements in parallelization by adding support to additional functions
4. Implementation of an electromagnetic EM-PIC model
5. Addition of fluid solver

mailto:info@particleincell.com

Particle In Cell Consulting LLC Starfish User’s Guide

 25

VI. Command Reference

This section summarizes all commands that can be included in the starfish.xml file. Each key can be supplied as an attribute
or as an XML node, for instance

<starfish randomize=”true”/>

and

<starfish>
<randomize>true</randomize>
</starfish>

are identical. Examples of data field types are given below.

type description example(s)

int integer (whole number) value -1

int2 two integers separated by comma 41,50

float a floating point number in double precision 1.06e23

float2 two floats separated by comma 1.07,-3.2

float_list arbitrary number of comma-separated floats -23.2,0,12.8

bool a true or false value true

string any text inlet

string_list multiple comma separated strings pressure, nd.xe

string_pairs multiple comma separated strings in “s1=s2” format. The
“s1=” part is not needed if “s2=s2”.

bfi=bi, sigma

string_tupples multiple pairs of strings grouped inside square brackets [u.xe,v.xe], [efi, efj]

element a valid child XML element <output> ... </output>

VI.a) General
VI.a.1) NOTE

Prints the specified message to the screen and log file.

Key Type Default Description

N/A string Note body

Example
<note>Simulation of ion flow past a charged sphere</note>

VI.a.2) LOG

Controls logging level

Key Type Default Description

level string One of [DEBUG, LOG_LOW, LOG, MESSAGE, WARNING, ERROR,
EXCEPTION]. Error and exception messages get printed regardless of
the log level.

Example

Particle In Cell Consulting LLC Starfish User’s Guide

 26

<note>Simulation of ion flow past a charged sphere</note>

VI.a.3) RESTART

Controls saving and reloading of restart data. Currently only particle data are saved. Support for field and fluid
materials saving and restarting is pending.

Key Type Default Description

it_save bool 500 Frequency of restart data saves

nt_add int -1 Number of additional time steps to run after restart load if >0

load bool false Controls whether restart file should be loaded

save bool false Controls whether restart data should be saved

Example
<restart it_save="200" nt_add="2500" load="true" save="false" />

VI.a.4) STARFISH

Runs the actual simulation.

Key Type Default Description

randomize bool true Will randomize the random number generator if true. Set to false
to replicate the same simulation.

max_processors int num CPUs -1 Maximum number of threads to use for multithreading. By
default set to CPU “number of cores” minus 1.

Example
<starfish randomize="true" />

VI.a.5) STOP

Stops the simulation. Used for debugging, as the rest of the input file will not processed. Otherwise, the rest
of the commands would need to be commented out.

Key Type Default Description

Example

<stop />

VI.a.6) TIME

Controls the duration of the simulation.

Key Type Default Description

dt float Simulation time step, in seconds.

num_it int Number of time steps to simulate.

steady_state string
/ int

auto Time step at which the steady state is reached. If “auto”, Starfish
automatically sets steady state based on differences in particle counts.

Example
<time>

Particle In Cell Consulting LLC Starfish User’s Guide

 27

<dt>5e-6</dt>

<num_it>1000</num_it>

</time>

VI.b) Input / Output

VI.b.1) ANIMATION

Wrapper to periodically save simulation results. Works by executing <output> at the specified interval.

Key Type Default Description

start_it int Time step at which output should begin

frequency int Number of time steps between file saves

output element Entire <output> XML element, following syntax as noted below. For
VTK files, file name will be modified to include the time step number.

clear_samples boolean true Specifies whether density and velocity samples should be cleared
after each save, but only prior to steady state

Example
<animation start_it="1" frequency="50">

<output type="2D" file_name="results/field_ani.vts" format="vtk">

<scalars>phi, nd.xe+,nd.xe</scalars>

<vectors>[efi, efj], [u.xe+,v.xe+]</vectors>

</output>

</animation>

VI.b.2) AVERAGING

Enables averaging of specified variables. The averaged values will have “-ave” append to the prefix. For
instance, the average number density of o+ will be called “nd-ave.o+”, while “nd.o+” will contain the
instantons data. Starting time step should correspond to time after steady state is reached.

Key Type Default Description

frequency int 1 Number of time steps between averaging samples

start_it int -1 Starting time step for averaging

variables string_list List of variables to average

Example

<averaging frequency="25" start_it="10000">

<variables>phi,rho,nd.o+,nd.e-,u.o+,v.o+</variables>

</averaging>

VI.b.3) LOAD_FIELD

Loads field data from a file. Can be used, among other things, to load an external magnetic field.

Key Type Default Description

format string TECPLOT File format. By default, the code supports TECPLOT or TABLE. A
TECPLOT file should list variables on a single VARIABLES line. The

Particle In Cell Consulting LLC Starfish User’s Guide

 28

TABLE format is assumed to start with ni,nj, and is hardcoded for
“z,r,B,Bz,Br” data.

file_name string name of the file to load

coords string_list names of two file variables to correspond to XY, RZ, or ZR, according
to the specified <domain> type.

vars string_pairs variables to load in “starfish_var=file_var” format. The assignment
part is not needed if the file variable is the same as the expected
Starfish variable name.

Example

<load_field format="tecplot" name="bfield">

<file_name>bfield.dat</file_name>

<coords>z,r</coords>

<vars>bfi=bz,bfj=br,lambda</vars>

</load_field>

-- example of a Tecplot file format –-

VARIABLES = "z", "r", "n_n"

ZONE I=52, J=18, F=POINT

0.0491 0.0071 1.09994e+014

-- example of a Table format --

47 22

 -0.018 0 0.03 0.03 0

VI.b.4) OUTPUT

Wrapper to periodically save simulation results. Works by executing <output> at the specified interval.

Key Type Default Description

type string Type of output to generate. Must be one of “1D”, “2D”,
“boundaries”, or “particles”.

file_name string Name of output file

format string Output file format. Currently only “TECPLOT” and “VTK” are
supported.

scalars (or
variables)

string_list List of node-centered scalar variables to output. For backward
compatibility, “variables” can be used as well.

cell_data string_list List of cell-centered scalars to output

vectors string_tupples Pairs of node-centered scalar variables to group together as
vectors. Only affects VTK output.

TYPE = “1D”

Saves a slice of mesh data by exporting data only along a single given “i” or “j” index. Data can be saved to
individual files or a 2D “time data” in which the y-axis is time.

Particle In Cell Consulting LLC Starfish User’s Guide

 29

mesh string Name of the mesh to output (only a single mesh output is
supported).

index string Logical grid position to output in format “I=xx” or “J=xx”. Can
specify “AVERAGE” to average output average data along the axis.

time_data_lines int 1 The “y” dimension of the time data grid - number of time samples
in a file. If set to 1, a one dimensional file is generated.

time_data_write_skip int Number of lines between time data file updates.

Example

<output type="1D" file_name="profile.vts" format="vtk">

<mesh>mesh1</mesh>

<index>I=1</index>

<variables>phi, rho, nd.xe+</variables>

</output>

<animation start_it="1" frequency="100" clear_samples="true">

<output type="1D" file_name="results/field_1D.vts" format="vtk">

<scalars>phi,rho,nd.e-, nd.ar+, t.e-, t.ar+, u.e-, u.ar+</scalars>

<mesh>mesh</mesh>

<index>J=average</index>

<time_data_lines>500</time_data_lines>

<time_data_write_skip>10</time_data_write_skip>

</output>

</animation>

TYPE = “2D”

Saves mesh field data. No additional inputs.

Example
<output type="2D" file_name="results/field.vts" format="vtk">

<scalars>psi, phi, te, rho, sigma, nd.xe+</scalars>

<vectors>[ue,ve], [u.xe+, v.xe+], [efi, efj], [jx,jy]</vectors>

</output>

TYPE = “BOUNDARIES”

Saves surface data along boundaries. No additional inputs.

Example
<output type="boundaries" file_name="boundaries.vtp" format="vtk">

<variables>deprate.xe+, flux-normal.xe+</variables>

</output>

TYPE = “PARTICLES”

Exports user specified number of randomly selected particles.

count int Number of particles to output

Example

Particle In Cell Consulting LLC Starfish User’s Guide

 30

<output type="particles" file_name="particles.dat" format="tecplot">

<species>ti2+,e-</species>

<count>10000,10000</count>

</output>

VI.b.5) PARTICLE_TRACE

Command to sample position and velocity of a specified particle to generate a trace file

Key Type Default Description

file_name string Name of output file

format string TECPLOT File format, currently only “TECPLOT” and “VTK” are supported.

material string Material of the sampled particle

id int Particle id

start_it int Starting time step for output

Example

<particle_trace file_name="trace.dat" material="HC">

<id>20685</id>

<start_it>495</start_it>

</particle_trace>

VI.b.6) STATS

Command to control frequency of saves to a global diagnostics file

Key Type Default Description

file_name string starfish_stats.csv Stats file name

skip int 1 Output frequency. Value <=0 disables file output.

Example

<stats skip="10" />

VI.b.7) SAMPLE_VDF

 Produces histogram of the velocity distribution function of a given material in a box

Key Type Default Description

material string Kinetic material to sample

xmin float2 [x1,y1] corner of the sampling region

xmax float2 [x2,y2] corner of the sampling region

speed_bins int 20 number of histogram bins for speed

vel_bins int3 20,20,20 number of histogram bins for velocity

start_it int -1 time step to start sampling

skip_sample int 100 number of time steps between sampling

skip_output int 1000 number of time steps between file outputs

file_name string file name prefix to output to. Data is stored in .csv format.

Particle In Cell Consulting LLC Starfish User’s Guide

 31

Example

<sample_vdf>

<material>e-</material>

<file_name>results/vdf_e-</file_name>

<xmin>1.5e-6,0</xmin>

<xmax>3.0e-6,5e-7</xmax>

<speed_bins>15</speed_bins>

<vel_bins>15,15,15</vel_bins>

<start_it>-1</start_it>

<skip_sample>500</skip_sample>

<skip_output>1000</skip_output>

</sample_vdf>

VI.c) Materials
VI.c.1) MATERIALS

Definition of materials known to the simulation. Contains one or more <material> elements.

Key Type Default Description

material element Material definition. See the following entry for Material for data fields.

Example

<materials>

<material name="Ar" type="kinetic">

..

</material>

<material name="SS" type="solid">

..

</material>

</materials>

VI.c.2) MATERIAL

Definition of a single material embedded within <materials> element

Key Type Default Description

type string Material type. Can be one of “solid” (materials that do not
change), “kinetic” (materials simulated with particles), and
“fluid_diffusion” (density updated with advection-diffusion
solver). Additional material types can be provided by plugins.

name string name of the material

init string_list List of one or more initial values for the following fields: “nd”,
“nd_back” (#/m3), “u”, “v” (m/s), and “T” (K). With the exception
of nd_back, these entries are currently used only to set the
initial values of density, velocity, or temperature on the

Particle In Cell Consulting LLC Starfish User’s Guide

 32

computational mesh. The value of nd_back is added to the
density computed from particles and can be used to set a
minimum material density floor.

molwt float material molecular weight

charge float material charge in elementary charge units

work_function float material work function in eV

p_vap_coeffs float3 coefficient for vapor pressure computation using Antoine
equation, log10 𝑝 = 𝐴 − 𝐵/(𝐶 + 𝑇)

ionization_energy float -1 ionization energy in eV, used by ionization MCC algorithm

type = ”SOLID”

Solid materials are used on objects

type = ”KINETIC”

Kinetic materials are modeled as particles with the PIC and/or DSMC method

spwt float default specific weight, number of real molecules pre simulation
particle

frozen bool false particle positions and velocities will not update if set to true.
Typically used to freeze particles from a restart file to create a
fixed background.

ref_temp float 275 reference temperature for DSMC cross-section model

visc_temp_index float 0.85 viscosity index for DSMC model

vss_alpha float 1 VSS coefficient, VHS logic used if 1

diam float 5e-10 molecular diameter in m

particle_merge_skip int -1 number of time steps between of particle merge operations

vel_grid_dims int3 number of cells for u,v,w velocity grid for particle merging. Cells
with more than two particles will be merged down to two.

type = ”FLUID_DIFFUSION”

Fluid material modeled using the advection-diffusion equation. Not yet fully implemented!

mu float material dynamic viscosity in kg/m/s

type = ”FLUID_ELECTRONS”

Fluid description of electrons. So far, only the QN and Boltzmann models are supported.

model string One of [“QN”, “BOLTZMANN”]

phi0 double Reference potential for the Boltzmann model, if not specified,
values used by the Poisson solver are used.

kTe0 double Reference temperature for the Boltzmann model, if not
specified, values used by the Poisson solver are used.

n0 double Reference density for the Boltzmann model, if not specified,
values used by the Poisson solver are used.

Example

<!-- charged particle with fixed background floor -->

Particle In Cell Consulting LLC Starfish User’s Guide

 33

<material name="Xe+" type="kinetic">

<molwt>131.3</molwt>

<charge>1</charge>

<init>nd=1e15,nd_back=1e4,T=1000 </init>

<mu>0</mu>

<spwt>2e9</spwt>

</material>

<!-- neutral kinetic material with DSMC data -->

<material name="Ar" type="kinetic">

<molwt>39.94</molwt>

<charge>0</charge>

<spwt>5e11</spwt>

<ref_temp>273</ref_temp>;

<visc_temp_index>0.81</visc_temp_index>

<vss_alpha>1.00</vss_alpha>

<diam>4.17e-10</diam>

</material>

<!-- solid material -->

<material name="SS" type="solid">

<molwt>52.3</molwt>

</material>

VI.d) Material Interactions
VI.d.1) MATERIAL_INTERACTIONS

Controls inter-material interactions, including the gas material / surface boundary interface. Interactions are
specified via child elements. Starfish natively supports four types of interactions:

1. surface_hit: interaction between material and a surface boundary
2. dsmc: interaction between two kinetic materials
3. mcc: interaction between a kinetic source and a fluid target
4. chemistry: interaction between two fluid materials

Key Type Default Description

surface_hit / mcc /
chemistry / dsmc

element Available interaction types. Additional types can be implemented
by plugins.

Example

<material_interactions>

<surface_hit>

...

</surface_hit>

<dsmc>

...

</dsmc>

Particle In Cell Consulting LLC Starfish User’s Guide

 34

</material_interactions>

VI.d.2) SURFACE_HIT

Command to control frequency of saves to a global diagnostics file

Key Type Default Description

file_name string starfish_stats.csv Stats file name

skip int 1 Output frequency. Value <=0 disables file output.

Example

<stats skip="10" />

VI.d.3) DSMC

Enables DSMC collisions between two kinetic materials

Key Type Default Description

pair string_list Names of the two materials participating in this interaction

model string Currently only “elastic” is supported

frequency int 1 Number of time steps between collisions

sig_cr_max float 1e-16 Initial value for the <sigma*cr>_max NTC parameter

sigma string Collision cross-section. Natively the following models are
supported:

 const: 𝜎 = 𝑐0

 inv: 𝜎 = 𝑐0/𝑔

 bird463: 𝜎 = 0.25𝜋𝑑𝑟𝑒𝑓
2 (

2𝑘𝑇𝑟𝑒𝑓

𝑚𝑟𝑔2)
𝜔−0.5

/Γ(2.5 − 𝜔) ,

equation 4.63 in Bird 2003

 tabulated: sigma value provided as a list of

sigma_coeffs float_list Collision cross-section coefficients

sigma_tabulated float2_list

sigma_dep_var string One of [VELOCITY, ENERGY], specifies the variable used to
compute cross-section

Example

<dsmc model="elastic">

<pair>N2,N2</pair>

<sigma>Bird463</sigma>

</dsmc>

VI.d.4) MCC

Enables MCC collisions between a kinetic and fluid / kinetic target. Properties of the target material are not
affected by the collision and hence this interaction is suitable only for cases of a rarefied source material

Particle In Cell Consulting LLC Starfish User’s Guide

 35

interacting with a much denser target. A kinetic material can be used as the target, in which case, the density
obtained by scattering particles to the grid will be used to obtain collision probability.

Key Type Default Description

source string Name of the source kinetic material.

target string Name of the target fluid or kinetic material

product <source> Optional post-collision material of the source. By default, there
is no species change.

model Collision model, one of [MEX/ELASTIC, CEX, IONIZATION]. MEX
or ELASTIC uses VHS to approximate momentum transfer, CEX
models charge exchange, and IONIZATION models ionization.

sigma string Collision cross-section. See description of DSMC for details.

max_target_temp float Maximum temperature of the target species

ionization_energy string

Example

<mcc model="cex">

<target>ar</target>

<source>ar+</source>

<sigma>inv</sigma>

<sigma_coeffs>1e-16</sigma_coeffs>

</mcc>

<mcc model="ionization">

<source>e-</source>

<target>Cu0</target>

<product>Cu+</product>

<sigma>table</sigma>

<sigma_tabulated>

[8.216227, 0.01989977e-20],

[11.279161, 0.8704262e-20],

...

</sigma_tabulated>

<sigma_dep_var>energy</sigma_dep_var>

<max_target_temp>10000</max_target_temp>

<frequency>50</frequency>

<!-- ionization_energy needs to be specified in material def for Cu -->

</mcc>

VI.d.5) CHEMISTRY

Enables fluid-fluid interactions. Densities of source materials (which can be kinetic or fluid) along with
temperature (or energy) of a dependent material are used to compute the reaction, 𝑛𝑠1𝑛𝑠2𝑘(𝑇𝑑). Products
are then generated accordingly and source material densities are depleted.

Key Type Default Description

sources string_list List of reactants with optional multipliers

Particle In Cell Consulting LLC Starfish User’s Guide

 36

products string_list List of products

rate element Reaction rate equation type

RATE

type string Currently only “POLYNOMIAL” is supported. This evaluates (𝑐0 + 𝑐1𝑣 +
𝑐2𝑣

2 + ⋯)𝑐𝑚𝑢𝑙𝑡

coeffs float_list List of model coefficients

multiplier float Coefficient multiplier

dep_var element Information about the dependent variable 𝑣 in the rate model.

DEP_VAR

mat string name of the dependent variable

wrapper string NONE Options are NONE, LOG10, or LOG10ENERGY

Example

<chemistry>

<sources>Xe,e-</sources>

<products>Xe+,2*e-</products>

<rate type=”polynomial”>

<coeffs>-0.57, 6.1978, -23.19, 30.439, 2.8407, -18.722</coeffs>

<multiplier>1e-20</multiplier>

<dep_var wrapper=”log10energy” mat=”e-“ />

</rate>

</chemistry>

VI.e) Boundaries
VI.e.1) BOUNDARIES

This command is used to define the surface geometry. It contains several <boundary> elements each
specifying a particular surface spline.

Key Type Default Description

boundary element Definition of a single boundary

transform element Optional, defines global transformation applied to all boundaries

TRANSFORM

scaling float2 1,1 Scaling in the i and j direction

translation float2 0,0 translation in the I and j direction

rotation float 0 Rotation about the z axis

reverse bool false Flips normal vector orientation

Example

<boundaries>

<transform>

<scaling>1e-3,-1e-3</scaling>

<translation>0,0</translation>

<reverse>true</reverse>

</transform>

Particle In Cell Consulting LLC Starfish User’s Guide

 37

<boundary>...</boundary>

<boundary>...</boundary>

</boundaries>

VI.e.2) BOUNDARY

Defines a single surface boundary spline.

Key Type Default Description

name string Name of the boundary

type string solid Boundary type. Can be one of: SOLID for a solid surface with fixed Dirchlet
b.c., OPEN for Neumann b.c. (not fully supported), SYMMETRY for
symmetric boundary reflecting particles, VIRTUAL for boundaries useful for
attaching sources but that are not affect material propagation, and SINK
for an absorbing boundary. Note that some of these are either extraneous
or not yet fully implemented.

value float 0 Boundary condition value. For SOLID boundaries this sets the Dirichlet
potential for the Poisson solver.

material string Boundary material, only required for SOLID

temp float 273.15 Boundary temperature, used to compute post-impact velocity

path string Spline definition in SVG-like format. The general syntax is [COMMAND]
x1,y1 x2,y2 ... [COMMAND] x,y. The following commands are supported:
“M x,y” move to (x,y), “m dx,dy” move by offset (dx,dy), “L x,y” line to (x,y)
from the previous point, “l dx,dy” line to point offset by (dx,dy) from the
last point, “C x1,y1 x2,y2,...” smooth cubic spline through points (x1,y1),
(x2,y2), ... Commands do not need to be repeated, for instance “M x1,y1 L
x2,y2 L x3,y3 L x4,y4” can be written as “M x1,y1 L x2,y2 x3,y3 x4,y4”. Points
need to be specified in counter-clockwise order around an solid boundary
(or in clockwise order around an open boundary), as point ordering
controls the normal vector orientation. Note that unlike in SVG, cubic
splines are specified by simply listing the points through which the spline
will pass and the control knot points are omitted.

transform element Optional transformation parameters

reverse bool Optional, flips normal vector orientation, overridden by entry in
<transform> if both defined.

Example

<boundary name=”inlet” value=”300”>

<material>SS</material>

<path>M 0,0 L 400,71</path>

<material>vent</material>

<reverse>true</reverse>

<transform>

<scaling>1e-3,1e-3</scaling>

</transform>

Particle In Cell Consulting LLC Starfish User’s Guide

 38

</boundary>

<boundary name=”downstream” type=”open”>

<path>M inlet:last C 0.086,0.007 0.085,0.014 0.0791,0.02</path>

</boundary>

VI.f) Domain
VI.f.1) DOMAIN

Specifies details of the computational domain (simulation mesh). Contains one or more <mesh> elements.

Key Type Default Description

type string XY Controls the meaning of “i” and “j” indexes. Available options are XY, RZ,
and ZR. Axisymmetric corrections are applied for RZ and ZR types.

mesh element Mesh definition. Currently support for multiple meshes is limited but will
be corrected in an upcoming version.

Example

<!-- domain file -->

<domain type=”rz”>

<mesh>...</mesh>

<mesh>...</mesh>

</domain>

VI.f.2) MESH

Specifies details of a single mesh. Currently two types are supported: uniform Cartesian mesh or an elliptic,
body fitted, mesh.

Key Type Default Description

name string Mesh name

type string Mesh type, one of UNIFORM or ELLIPTIC

mesh-bc element Specifies mesh boundary conditions

type=”UNIFORM”

The following inputs are required for UNIFORM mesh

origin float2 Coordinates of i=0,j=0 point

spacing float2 Distance between nodes

nodes int2 Number of nodes in i and j direction

type=”ELLIPTIC”

The following inputs are required for ELLIPTIC mesh. This option creates a stretched mesh between four
boundaries with a prescribed number of nodes in the i and j direction.

left string Name of the <boundary> forming the left edge

right string Name of the boundary for the right edge

bottom string Name of the boundary for the bottom edge

top string Name of the boundary for the top edge

Particle In Cell Consulting LLC Starfish User’s Guide

 39

nodes int2 Number of nodes in i and j direction

MESH-BC

value float 0 Boundary condition value. Currently only used to set Dirichlet boundaries.

wall string Mesh wall to apply this boundary to. One of “left”, “right”, “bottom”, or
“top”.

type string Mesh boundary type, supported values include OPEN, DIRICHLET<
NEUMANN, PERIODIC, SYMMETRY, SINK, and CIRCUIT.

Example

<mesh type=”uniform” name=”mesh”>

<origin>0, 0</origin>

<spacing>5e-5, 1e-4</spacing>

<nodes>51, 361</nodes>

<mesh-bc wall=”left” type=”symmetry” />

<mesh-bc wall=”bottom” type=” eumann” />

</mesh>

<mesh type=”elliptic” name=”downstream”>

<left>exit_plane</left>

<bottom>symmetry_outside</bottom>

<right>downstream</right>

<top>body</top>

<nodes>35,13</nodes>

</mesh>

VI.g) Sources
VI.g.1) SOURCES

Specifies material sources. Starfish supports two types of sources: boundary sources that inject mass along a
specified boundary, and volume source that generate mass within the computational mesh.

Key Type Default Description

boundary_source /
material_source /
volume_source

element The actual source definitions

Example

<sources>

<boundary_source>...</boundary_source>

<volume_source>...</volume_source>

</sources>

VI.g.2) BOUNDARY_SOURCE

Specifies material sources. Starfish supports three types of sources: boundary that inject mass along a
specified boundary, material sources that act like boundary sources but are applied to all boundaries with the
given material, and volume source that generate mass within the computational mesh.

Particle In Cell Consulting LLC Starfish User’s Guide

 40

Key Type Default Description

name string source name

type string source type, one of UNIFORM, MAXWELLIAN, AMBIENT, and
COSINE

material string name of the injected material

boundary string surface boundary name to attach the source to

Listed below are additional type-specific inputs.

type=”UNIFORM”

This source injects a cold beam. It is a streamlined implementation of a Maxwellian source with T=0K.

mdot float Mass flow rate in kg/s

v_drift float Drift velocity in m/s

type=”MAXWELIAN”

Source for injecting mass sampled from the drifting Maxwellian velocity distribution function

mdot float Mass flow rate in kg/s

v_drift float Drift velocity in m/s

temperature float Temperature in K

start_it float 0 Time step to begin injection

end_it float -1 Time step to end injection, or -1 to ignore

type=”AMBIENT”

Generates mass in cells adjacent to the specified boundary such that prescribed density or pressure is
maintained. Particle velocities are sampled from the Maxwellian distribution.

drift_velocity float3 0,0,0 Drift velocity to apply to sampled material

temperature float Assumed gas temperature in K, controls injection velocity and also
used to scale pressure to density from 𝑃 = 𝑛𝑘𝑇.

enforce string TOTAL_P
RESSURE

Controls which property the source should maintain. Available
options are TOTAL_PRESSURE, PARTIAL_PRESSURE, and DENSITY

density float Required for enforce=”DENSITY”, controls the desired number
density in m-3.

total_pressure float Required for enforce=”TOTAL_PRESSURE” or
“PARTIAL_PRESSURE”, in Pa

partial_pressure float Required for enforce=”PARTIAL_PRESSURE”, used to control the
desired species fraction per 𝑃𝑖/𝑃𝑡𝑜𝑡

type=”COSINE”

Injects particles with velocity sampled from the cosine distribution about the surface normal

mdot float Injection mass flow rate in kg/s

v_drift float Drift velocity in m/s

Particle In Cell Consulting LLC Starfish User’s Guide

 41

type=”THERMIONIC”

Models thermionic emission of electrons. Emission rate controlled by boundary spline temperature. Emission
current obtained from Richardson model, 𝐽 = 𝜆𝑅𝐴0𝑇

2exp (−𝑊 𝑘𝑇⁄), where 𝐴0 ≈ 1.2 × 106 𝐴𝑚−2𝐾−2 .

lambda_r float 0.5 Coefficient for emission current calculation

use_field boolean true Controls whether Schottky (local electric field) emission should be
included.

type=”VAPORIZATION”

Models evaporation of a neutral material from a hot cathode. Emission rate controlled by material vapor
pressure coefficients and boundary temperature.

Example

<boundary_source name="neutral_source" type="maxwellian">

<material>xe</material>

<boundary>inlet</boundary>

<mdot>4e-7</mdot>

<v_drift>1000</v_drift>

<temp>1000</temp>

</boundary_source>

<boundary_source name="amb_0.5Torr" type="ambient">

<enforce>pressure</enforce>

<material>N2</material>

<boundary>ambient</boundary>

<drift_velocity>0,0,0</drift_velocity>

<temperature>288.0</temperature>

<total_pressure>66.66</total_pressure>

</boundary_source>

VI.h) Solver
VI.h.1) SOLVER

Activates a field solver. Currently only plasma potential solvers are implemented.

Key Type Default Description

type string Solver type

initial_only bool false If set to true, only the initial field will be computed

max_it float 5000 Maximum number of solver iterations

tol float 1e-6 Solver tolerance

nl_max_it float 50 Maximum number of solver iterations for a non-linear solver

nl_tol float 1e-4 Non-linear solver tolerance

type=”CONSTANT-EF”

This “solver” fixes electric field components to the prescribed value

Particle In Cell Consulting LLC Starfish User’s Guide

 42

comps float2 Values for Ei, Ej in V/m

type=”QN”

Sets potential from the quasi-neutral Boltzmann relationship 𝜙 = 𝜙0 + 𝑘𝑇𝑒,0 ln(𝑛 𝑛0⁄).

n0 float Reference number density, #/m3

Te0 float Reference temperature in eV

phi0 float Reference potential in V

type=”POISSON”

Solves the Poisson’s equation 𝜖0∇
2𝜙 = −𝑒(𝑛𝑖 − 𝑛𝑒), where 𝑛𝑒 is obtained directly from simulation electrons

in a linear mode, or is set to 𝑛𝑒 = 𝑛0 exp (
𝜙−𝜙0

𝑘𝑇𝑒,0
) in the non-linear mode.

linear bool false Controls how the electron density term is computed.

n0 float 1e15 Reference density for the non-linear term in #/m3

Te0 float 1 Reference temperature for the non-linear term in eV

phi0 float 0 Reference potential for the non-linear term in V

Example

<!-- non-linear poisson solver example -->

<solver type="poisson">

<n0>1e12</n0>

<Te0>1.5</Te0>

<phi0>0</phi0>

<max_it>100000</max_it>

<tol>1e-3</tol>

<nl_tol>1e-2</nl_tol>

</solver>

<!-- prescribed electric field example -->

<solver type="constant-ef">

<comps>0,0</comps>

</solver>

<!-- quasineutral Boltzmann inversion example -->

<solver type="qn">

<n0>1e12</n0>

<Te0>1.5</Te0>

<phi0>0</phi0>

</solver>

VII. Data Fields

The below table summarizes data field and boundary variables in the baseline configuration. All material-specific fields
follow syntax “base.mat”, for instance “nd.xe” is the number density of material “xe”. Averaged fields generated by the
<averaging> command will have “-ave” appended to the base, for instance “phi-ave” and “nd-ave.xe”.

Particle In Cell Consulting LLC Starfish User’s Guide

 43

VII.a) Mesh Data

Name Units Description

VII.a.1) General

nodevol m-3 Mesh node volume, used for computing number density

phi V plasma potential

rho C/m3 charge density

efi,efj V/m electric field components

bfi,bfj T magnetic field components

p Pa total pressure

VII.a.2) Material-Specific (base.mat)

nd #/m3 material number density

u,v,w m/s node-averaged gas mean velocity

nd-ave #/m3 steady-state averaged number density

u-ave,v-ave,w-ave m/s steady-state averaged gas mean velocity

t K average gas temperature

p Pa gas pressure, obtained from the ideal gas law

t1,t2,t3 K gas temperature in i,j,k direction

mpc # number of simulation macroparticles per cell

count-sum # internal variable used to obtain density, contains specific weight sum

u-sum,v-sum,w-sum m/s internal variable used to obtain velocity, contains sum of wspu

uu-sum,vv-sum,ww-
sum

 internal variable used to obtain temperature, contains sum of wspu
2

mpc-sum # internal variable used to obtain mpc, contains sum of macroparticles

VII.a.3) MCC

mcc-count,
mcc-count2, ...

Number of collisions

mcc-nu, mcc-nu2, ... #/s MCC Collision rate

mcc-real-sum,
mcc-real-sum2, ...

Internal variable used to compute MCC collision count, stores cumulative
number of real particles undergoing collisions

mcc-count-sum,
mcc-count-sum2, ...

Internal variable used to compute MCC collision count, stores cumulative
number of MCC collisions

VII.a.4) DSMC

dsmc-count,
dsmc-count2, ...

Number of collisions

dscm-nu, dsmc-nu2,... #/s Collision rate

dsmc-real-sum, dsmc-
real-sum2, ...

Internal variable used to compute DSMC collision count, stores cumulative
number of real particles undergoing collisions

Particle In Cell Consulting LLC Starfish User’s Guide

 44

dsmc-count-sum,
dsmc-count-sum2, ...

Internal variable used to compute DSMC collision count, stores cumulative
number of MCC collisions

VII.b) Boundary Data

Name Units Description

VII.b.1) Material-Specific

flux #/m2/s Total number of particles hitting the boundary per second, scaled by
boundary area

flux-normal #/m2/s Particle flux multiplied by the cosine angle between the incoming velocity
vector and surface normal

deprate kg/s Rate of mass depositing to the surface

depflux kg/m2/s Deposition rate scaled by the boundary area

VIII. References

[1] L. Brieda and M. Keidar, "Development of the Starfish Plasma SImulation Code and Update on Multiscale Modeling of
Hall Thrusters," in AIAA Joint Propulsion Conference, Atlanta, GA, 2012.

[2] C. Birdsall and A. Langdon, Plasma physics via Computer Simulations, Institute of Physics Publishing, 2000.

[3] G. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford Science Publications, 1994.

[4] M. Jugroot, C. Groth, T. B, B. V and B. Collings, " Numerical investigation of interface region flows in mass
spectrometers: neutral gas transport," J. of Phys., D: Applied Physics, vol. 37, pp. 1289-1300, 2004.

