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This document summarizes equations used to solve flow in a cylindrical pipe using the stream function
approach as seen in https://www.particleincell.com/2016/vorticity-streamfunction-cylindrical.

1 Governing Equations

1.1 Velocity Components

Velocity components of an incompressible axisymmetric flow can be described using Stokes stream function
ψ as [1]
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The azimuthal component uθ does not depend on the stream function and can be defined independently. In
this writeup, uθ = 0. Also, the volumetric flow bounded by streamtube ψ is Q = 2πψ. This formulation
automatically satisfies continuity ∇ · ~u = 0, since
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1.2 Vorticity

Vorticity is defined as ~ω = ∇× ~v. For axisymmetric flow with ∂/∂θ = 0 and uθ = 0 only the wθ component
survives and we have
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1.3 Stream function governing equation

By substituting definitions of velocity in terms of Stokes stream function, Eq. 1, into Eq. 2 for vorticity, we
obtain
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The left side of this equation is not ∇2ψ due to the negative sign on the last term on the left side.
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1.4 Vorticity Transport Equation

The temporal evolution of vorticity is given by the vorticity transport equation. This equation is normally
derived by taking curl of the momentum equation, for instance see [2] for details, and is given by
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For the axisymmetric flow we have
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2 Finite Difference Form

2.1 Stream function

Equation 3 is discretized using standard central difference as
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This equation is solved using an SOR-accelerated Jacobi solver, with convergence check ||ψk+1−ψk|| < εtol.

2.2 Vorticity

The vorticity transport equation, Equation 4, is advanced using the Runge-Kutta fourth-order (RK4)
method. Letting vorticity transport equation be given by
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we have [3]
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3 Boundary Conditions

In order to solve this equation (using finite difference method) we need to specify boundary conditions.
There are five types of boundaries to consider for the tube problem: 1) wall, 2) axis of revolution, 3) inlet,
4) outlet on zmax, and 5) outlet on rmax. These are sketched in Figure 3.

3.1 Inlet

We assume the flow entering through the inlet is parallel to the cylinder axis. Thus at the inlet ur = v = 0
or

∂ψ

∂z

∣∣∣
inlet

= 0 (10)
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Figure 1: Boundary types for pipe problem

Substituting v = 0 into the vorticity equation gives us

ω
∣∣
inlet

= −∂u
∂r

(11)

These equations are discretized using first order scheme as ψ0,j = ψ1,j and ω0,j = (u0,j−1 − u0,j+1)/(2∆r).

3.2 Axis of Revolution

We require v = 0 as there can be no flow across the axis of revolution. Therefore ∂ψ/∂z = 0, and value of
ψ is constant along the axis. We set this value to zero, giving us

ψ
∣∣
axis

= 0 (12)

Zero radial velocity also implies that along the axis ω = −∂u/∂r. Axial symmetry implies ∂()/∂r = 0 at
r = 0, and

ω
∣∣
axis

= 0 (13)

3.3 Wall

Q = 2π(ψ2 − ψ1) is the volumetric flow rate between two stream tubes. With ψ1 = 0 being the axis of
revolution, we have Dirichlet

ψ
∣∣
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=
1

2
u0r

2
inlet (14)

along the outer wall. Vorticity boundaries along the wall are derived using similar approach to [2]. Since the
stream function is constant along a wall, derivatives of ψ in Equation 3 vanish in the wall direction. Along
a left wall we have
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Assuming the wall is at i = L, we can write the following Taylor series expansion
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Using similar approach, the boundary condition for a right wall at i = R is found to be
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Along the top wall, ∂ψ/∂z = 0 and Equation 3 reduces to[
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Again we start by expanding the second derivative,

ψi,T−1 = ψi,T −
∂ψ

∂r

∣∣∣
i,T

∆r +
∂2ψ

∂r2

∣∣∣
i,T

∆r2

2

Using ∂ψ/∂r = ur, the above reduces to
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Substituting into the original equation,
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There is no bottom wall in this problem, but for generality, the matching boundary condition can be found
to be
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3.4 Zmax outlet

In general, the flow will be aligned with the z-axis, however, there may be some non-zero v component due
to jet expansion. As such, simply setting ∂ψ/∂z|zmax = 0 may not be valid. Following approach in [2], on
zmax we let

∂ψ

∂z

∣∣∣
zmax

= −vr (19)

which is differenced as ψni−1,j = ψni−2,j −∆zvni−1,jrj . Vorticity boundary condition on the outlet is set as

∂ω

∂z

∣∣∣
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= 0 (20)

or ωni−1,j = ωni−2,j

3.5 Rmax outlet

This is the trickiest of all boundaries and I am not particularly sure what boundary condition is most
applicable. Generally, we expect there to be very little / no flow here. Setting no-flow boundary is analogous
to making this boundary a wall, with ψ = ψwall and ω set from Equation 17. However, I think more
appropriate boundary may be requiring that any flow there may be is perpendicular to the wall, hence u = 0
and

∂ψ

∂r

∣∣
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= 0 (21)

which is differenced as ψi,nj−1 = ψi,nj−2. Vorticity boundary condition is set similarly to the zmax outlet
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or ωni−1,j = ωni−2,j
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