
Starfish Webinar
January 25th, 2018

Lubos Brieda, Ph.D.
Particle In Cell Consulting LLC

particleincell.com/starfish

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

2

• Speaker Bio: Lubos Brieda.
– PhD in Mechanical and Aerospace Engineering from George Washington University in 2012

• Advisor: Prof. Michael Keidar

• Thesis topic: multiscale modeling of Hall thrusters

– Master’s Degree in Aerospace Engineering from Virginia Tech in 2005

• Advisor: Prof. Joe Wang

• Thesis topic: fully kinetic simulations of ion beam neutralization with a 3D code

– Work experience:

• Air Force Research Lab 2005-2008

• NASA Goddard 2008-2012

• Particle In Cell Consulting 2008 – present

– Research Interests:

• Plasma modeling

• Electric (plasma) propulsion

• Contamination transport

Bio

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

3

• I also offer online courses on various aspects of plasma modeling:
– Fundamentals of the PIC method: This course introduces the Particle in Cell method used for kinetic

plasma simulations using a step-by-step approach. We will develop 1D, 3D, and 2D (axisymmetric) codes
to simulate plasma sheath, E×B transport, plasma flow past a charged sphere, and a simple ion gun.

– Advanced PIC techniques: This course covers topics beyond the scope of the intro course. It covers three
main concepts: electromagnetic PIC (EM-PIC), Direct Simulation Monte Carlo (DSMC) collision modeling,
and finite element PIC (FEM-PIC).

– Distributed Computing for Plasma Simulations: In this course you’ll learn how to develop plasma
simulation codes that utilize multiple CPUs and graphic cards to handle larger simulation domains or to
run faster. We’ll cover multithreading, distributed computing with MPI, and GPU computing using CUDA.

– Fluid modeling of plasmas (March 2018): This new course will teach you how simulate dense plasmas in
which the continuum assumption holds. We will cover single and multi-fluid MHD equations as well as
hybrid approaches with detailed electron model and some advanced topics like Vlasov solvers.

• Please see https://www.particleincell.com/courses/ for more info and to sign up
– Early bird rate for the fluid modeling course ends February 6th

Courses

https://www.particleincell.com/pic-fundamentals/
https://www.particleincell.com/advanced-pic/
https://www.particleincell.com/distributed-computing
https://www.particleincell.com/fluid-modeling/
https://www.particleincell.com/courses/

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

4

• What is Starfish?
– Two-Dimensional (XY or RZ) Java code for modeling ionized and non-ionized gases

– There are two editions: “regular” and “light”

– The light edition, Starfish-LE, meant to be an academic tool that you can use to learn about modeling
plasmas and rarefied gases and possibly extend with your own models <- Topic of this webinar

– You can download the binary from https://www.particleincell.com/starfish/ and get the source code from
https://github.com/particleincell/Starfish-LE

– There you will also find links to a five step tutorial for getting started as an end user

– Today we will briefly review the tutorials and then review development within Starfish

About Starfish

https://www.particleincell.com/starfish/
https://github.com/particleincell/Starfish-LE

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

5

• Computational Domain: 2D XY and RZ support utilizing one or more rectilinear meshes

• Surface Geometry: defined using linear and/or cubic splines specified in SVG-like format.

• Materials: multiple fluid and/or kinetic species

• Material Interactions: DSMC (particle-particle), MCC (particle-fluid), and chemical
reactions (fluid-fluid)

• Sources: surface and volume sources such as Maxwellian, ambient pressure,

• Output: field, surface, and particle data saved in Tecplot or Paraview format, support for
animation and data averaging

• Solvers (Starfish-LE): electrostatic particle in cell (ES-PIC), diffusion equation solver

• Parallelization: multithreaded particle push

• Short term wish list: GUI, better parallel processing, electromagnetic model (EM-PIC),
MHD model for plasma, adaptive mesh refinement

Starfish Features

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

6

• Starfish is a command line code

– GUI development right now on hold

• Commands specified in an XML starfish.xml file

• Utilizing standard XML syntax, the file consists
of numerous <command> ... </command>
elements

• Each command element can contain multiple
attributes or child nodes

<command attr=“value”>

<node1>node1_value</node1>

<node2>node2_value</node2>

</command>

• There is no difference in using attributes or
nodes to specify value

• Inputs can be split into multiple files loaded
with a <load> command

Starfish Continued
<simulation>

<note>Starfish Tutorial: Part 1</note>

<!-- load input files -->

<load>domain.xml</load>

<load>materials.xml</load>

<load>cylinder.xml</load>

<!-- set potential solver -->

<solver type="poisson">

<n0>1e12</n0>

<Te0>1.5</Te0>

<phi0>0</phi0>

<max_it>1e4</max_it>

<nl_max_it>25</nl_max_it>

<tol>1e-4</tol>

<nl_tol>1e-3</nl_tol>

<linear>false</linear>

</solver>

<!-- set time parameters -->

<time>

<num_it>0</num_it>

<dt>5e-7</dt>

</time>

<!-- run simulation -->

<starfish />

<!-- save results -->

<output type="2D" file_name="field.dat" format="tecplot">

<variables>phi, efi, efj, rho, nd.O+</variables>

</output>

<output type="1D" file_name="profile.dat" format="tecplot">

<mesh>mesh1</mesh>

<index>J=0</index>

<variables>phi, efi, efj, rho, nd.o+</variables>

</output>

<output type="boundaries" file_name="boundaries.dat" format="tecplot" />

</simulation>

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

7

• Without getting into much programming detail (yet), Starfish was developed as a flexible,
easily extensible framework

• It utilize concepts from Object Oriented Programming

• As an example, consider a general gas material. In order to perform a gas simulation, we
need densities, temperatures, a bulk velocities for all gas materials present in the
simulation at some time step k.

• There are many methods that can be used to update these properties depending on
problem details:
– Particle in Cell (PIC) method for low density plasmas

– Navier Stokes (NS) solver for dense neutral gases

– Magnetohydrodynamics (MHD) for dense plasmas, etc...

• Using OOP, we can define a generic concept of a material that can somehow integrate its
properties to a new time step

• The main simulation driver no longer needs to care about what numerical method is used

Starfish Continued

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

8

• The code implements the following algorithm

Basic Algorithm

initialize command modules based on starfish.xml

while (time < max_time):

update global fields (plasma potential, etc...)

sample sources (injects new materials)

update materials (integrates densities, velocities ...)

perform interactions (inter-material collisions or chemical reactions)

save restart data (optional)

animation save (optional, output of visualization files)

averaging sample (optional, averaging to smooth out results)

print stats (writes information to the screen and log file)

time advance (advances simulation time)

finalize command modules

• The user specified information in starfish.xml defines the actual algorithms performed within each
of the above steps

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

9

• Here is the list of currently defined command modules in the order of appearance

Modules

Module Purpose Module Purpose

note Adds user defined message to the log file time Controls time step and code termination

boundaries Loads line segments defining surface
geometry and contains math functions for
line-line intersections

load_field Support for loading magnetic (and other) fields

domain Generates computational mesh(es) restart Support for restarting simulation

materials Loads definition of solid or gas materials stop Terminates the code (useful for debugging)

material_
interactions

Handles surface interactions, chemistry,
and collisions

starfish Provides simulation main loop

sources Contains mass injection algorithms particle_trace Output of a single particle to a file

solver Various field solvers (such as Poisson) animation Generates output files at user defined interval

output Functions for generating output files averaging Data averaging

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

10

• We will go through the steps for setting up a simple simulation of
ions flowing past a charged sphere, from
https://www.particleincell.com/2012/starfish-tutorial-part1/

• We start by defining problem geometry and solving the initial
field

Flow Past a Sphere

<simulation>

<note>Starfish Tutorial: Part 1</note>

<!-- load input files -->

<load>domain.xml</load>

<load>materials.xml</load>

<load>cylinder.xml</load>

<!-- set potential solver -->

<solver type="poisson">

<n0>1e12</n0>

<Te0>1.5</Te0>

<phi0>0</phi0>

<max_it>1e4</max_it>

<nl_max_it>25</nl_max_it>

<tol>1e-4</tol>

<nl_tol>1e-3</nl_tol>

<linear>false</linear>

</solver>

<!-- set time parameters -->

<time>

<num_it>0</num_it>

<dt>5e-7</dt>

</time>

<!-- run simulation -->

<starfish />

<!-- save results -->

<output type="2D" file_name="field.dat" format="tecplot">

<variables>phi, efi, efj, rho, nd.O+</variables>

</output>

<output type="boundaries" file_name="boundaries.dat"

format="tecplot" />

</simulation>

https://www.particleincell.com/2012/starfish-tutorial-part1/

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

11

• The <domain> command (including from domain.xml) specifies details of the
computational domain
– This is the computational mesh used to compute gas density or solve plasma potential

• Syntax is
<domain>

<mesh> ... </mesh>

<mesh> ... </mesh>

</domain>

• Each <mesh> child then specifies
additional parameters such as type
(uniform), origin, spacing, and number
of nodes

• Mesh boundary conditions <mesh-bc> can also be specified. Open boundary is the
default.

Domain

<domain type="xy">

<mesh type="uniform" name="mesh1">

<origin>-0.15,0</origin>

<spacing>5e-3, 5e-3</spacing>

<nodes>70, 40</nodes>

<mesh-bc wall="left" type="dirichlet" value="0" />

</mesh>

</domain>

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

12

• <boundaries> command (cylinder.xml)
specifies surface geometry using an
SVG-like path

• Multiple boundaries can be listed

• Boundaries can be joined together using
name:first or name:last
– <path>M cylinder:last L 2 1 ...</path>

• Very important: the code uses right
hand orientation to set normal vectors

• Normals need to face into the gas
domain, the region opposite the normal
is the solid domain (with the code using sugarcubing)

• Incorrect normals orientation will result
in the code treating the gas region as the solid domain

Boundaries
<boundaries>

<boundary name="cylinder" type="solid" value="-100"

reverse="false">

<material>SS</material>

<path>M 0.05, 0 L 0.0475528, -0.0154508 0.0404508, -

0.0293893 0.0293893, -0.0404508 0.0154508, -0.0475528 -

9.18E-18, -0.05 -0.0154508, -0.0475528 -0.0293893, -

0.0404508 -0.0404508, -0.0293893 -0.0475528, -0.0154508

-0.05, 6.12E-18 -0.0475528, 0.0154508 -0.0404508,

0.0293893 -0.0293893, 0.0404508 -0.0154508, 0.0475528

3.06E-18, 0.05 0.0154508, 0.0475528 0.0293893,

0.0404508 0.0404508, 0.0293893 0.0475528, 0.0154508

0.05, 0</path>

</boundary>

</boundaries>

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

13

• The <materials> command specifies
different materials

• Material type controls how the density
and velocity is updated
– solid materials are time invariant

– kinetic materials use the particle in cell
method

– fluid_diffusion solves the diffusion equation
(note, this material is temporarily removed
from Starfish-LE but will be reintegrated
shortly)

• You can register new material types by
developing solver plugins

Materials

<!-- materials file -->

<materials>

<material name="O+" type="kinetic">

<molwt>16</molwt>

<charge>1</charge>

<spwt>5e9</spwt>

<init>nd_back=1e4</init>

</material>

<material name="SS" type="solid">

<molwt>52.3</molwt>

<density>8000</density>

</material>

</materials>

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

14

• Field solvers are specified with a <solver> command
– Here we specify a non-linear Poisson solver that solves

∇2𝜙 = −𝑒 𝑛𝑖 − 𝑛0 exp
𝜙 − 𝜙0

𝑘𝑇𝑒

• We also specify number of simulation time steps (zero to
just get the initial field) with <time> and then run the
simulation with <starfish />

• Results are saved in the Tecplot format using

Solver

<!-- set potential solver -->

<solver type="poisson">

<n0>1e12</n0>

<Te0>1.5</Te0>

<phi0>0</phi0>

<max_it>1e4</max_it>

<nl_max_it>25</nl_max_it>

<tol>1e-4</tol>

<nl_tol>1e-3</nl_tol>

<linear>false</linear>

</solver>

<!-- set time parameters -->

<time>

<num_it>0</num_it>

<dt>5e-7</dt>

</time>

<!-- run simulation -->

<starfish />

<!-- save results -->

<output type="2D" file_name="field.dat" format="tecplot">

<variables>phi, efi, efj, rho, nd.O+</variables>

</output>

<output type="1D" file_name="profile.dat" format="tecplot">

<mesh>mesh1</mesh>

<index>J=0</index>

<variables>phi, efi, efj, rho, nd.o+</variables>

</output>

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

15

• You should see similar output when running the code
C:\codes\starfish\dat\tutorial\step1>java -jar starfish.jar

==

> Starfish v0.17 LE (Development)

> General 2D Plasma / Gas Kinetic Code

> (c) 2012-2017, Particle In Cell Consulting LLC

> info@particleincell.com, www.particleincell.com

!! This is a development version. The software is provided as-is,

!! with no implied or expressed warranties. Report bugs to

!! bugs@particleincell.com

===

Processing <note>

Starfish Tutorial: Part 1

Processing <domain>

Processing <materials>

Processing <boundaries>

Processing <solver>

Processing <time>

Processing <starfish>

Starting main loop

it: 0 O2+: 0

WARNING: !! GS failed to converge in 10000 iteration, norm = 1.3797628795224026

WARNING: !! GS failed to converge in 10000 iteration, norm = 0.004582671221260977

WARNING: !! GS failed to converge in 10000 iteration, norm = 6.91735940453368E-6

Processing <output>

Processing <output>

Processing <output>

Done!

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

16

• In tutorial step 3, we add interparticle interactions
and also specify a surface source to inject particles

• We need a new boundary spline to associate with the
source (in boundaries.xml)
– This is a straight line along the left domain face with the normal

pointing in the +X direction

• We use a uniform source to inject particles. This source
generates a cold beam with constant 𝑚 in kg/s

Adding particles and interactions

<simulation>

<note>Starfish Tutorial: Part 3</note>

<!-- load input files -->

<load>domain.xml</load>

<load>materials.xml</load>

<load>boundaries.xml</load>

<load>interactions.xml</load>

<!-- set sources -->

<sources>

<boundary_source name="space">

<type>uniform</type>

<material>O+</material>

<boundary>inlet</boundary>

<mdot>5.313e-11</mdot>

<v_drift>10000</v_drift>

</boundary_source>

</sources>

<!-- set time parameters -->

<time>

<num_it>500</num_it>

<dt>5e-7</dt>

</time>

...

</simulation>

<boundary name="inlet" type="virtual" >

<path>M -0.15,0.2 L -0.15, 0</path>

</boundary>

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

17

• <material_interactions> command tells the
code how to handle inter-material and also
material-surface interactions. Possible
children include:
– surface_hit: how to treat particles impacting

surfaces. Support for fluid materials is pending.

– mcc: MCC collisions for particle-fluid interactions

– dsmc: DSMC collisions for particle-particle
interactions

– chemistry: fluid-fluid reactions that can be used to
model ionization

Material Interactions

<material_interactions>

<chemistry process="ionization">

<sources>Xe,e-</sources>

<products>Xe+,e-</products>

<rate>const</rate>

<rate_coeffs>1e-18</rate_coeffs>

</chemistry>

<mcc process="scatter">

<source>Xe+</source>

<target>Xe</target>

<sigma>const</sigma>

<sigma_coeffs>1e-18</sigma_coeffs>

</mcc>

<surface_hit source="Xe+" target="BN">

<emission>diffuse</emission>

<product>Xe</product>

<c_stick>0.5</c_stick>

<c_rest>1</c_rest>

<c_accom>0.5</c_accom>

<sputter type="const" yield="0.1" product="BN" />

</surface_hit>

</material_interactions>

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

18

• Here is an animation of ion number density and plasma potential for this case

• We can also visualize number density of
neutrals generated by ions recombining at
the surface

Results

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

19

• See https://www.particleincell.com/2017/starfish-tutorial-dsmc/ for a
DSMC example

• Simulates expansion of atmospheric pressure gas into
a vacuum cavity

• Based on a CFD study by

– Jugroot, M., Groth, C., Thomson B., Baranov V., Collings, B., Numerical
investigation of interface region flows in mass spectrometers: neutral gas
transport”, J. of Phys., D: Applied Physics, vol. 37, pp. 1289–1300, 2004

DSMC example

https://www.particleincell.com/2017/starfish-tutorial-dsmc/
http://arrow.utias.utoronto.ca/~groth/publications/JPD-2004-jugroot-neutrals.pdf

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

20

• To add DSMC, you need to add a <dsmc> material
interaction
– Next specify the two interacting materials in <pair>

– VHS collision cross-section based on equation 4.63 in Bird is
implemented

– It uses material properties specified in <materials>

DSMC

<!-- material interactions file -->

<material_interactions>

<surface_hit source="N2" target="SS">

<product>N2</product>

<model>diffuse</model>

<prob>1.0</prob>

</surface_hit>

<dsmc model="elastic">

<pair>N2,N2</pair>

<sigma>Bird463</sigma>

</dsmc>

</material_interactions>

<!-- materials file -->

<materials>

<material name="N2" type="kinetic">

<molwt>28</molwt>

<charge>0</charge>

<spwt>1e11</spwt>

<ref_temp>275</ref_temp>;

<visc_temp_index>0.74</visc_temp_index>

<vss_alpha>1.00</vss_alpha>

<diam>4.17e-10</diam>

</material>

<material name="SS" type="solid">

<molwt>52.3</molwt>

<density>8000</density>

</material>

</materials>

STARFISH DEVELOPMENT

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

22

• Starfish conceptually consists of:

1. Core library providing support
for I/O and main logic hooks

2. Numerous modules
implementing relevant
physics

• The modules can be
further extended with
plugins
– The full version implements many

different plugins extending the
Starfish-LE capabilities

Code Overview

Core Module (I/O,
base classes)

PIC/MCC

Rarefied Gas
Dynamics

(DSMC, sigmas)

Fluid Dynamics
(CFD, Diffusion)

Plasma Solvers
(MHD, EM)

Electric
Propulsion (HET

models)

Space Environment
(sputtering, SEE,
surf. chemistry)

Surface Effects
(sputtering, SEE,
surf. Chemistry)

Sources
(advanced

models)

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

23

• Start by getting the source code from GitHub: https://github.com/particleincell/Starfish-LE

– While you can just download a zip file of the entire source, it’s better to clone the repo using Git. This will make it
easier to receive updates and makes it possible for you to contribute to the project

• http://stackoverflow.com/questions/5989893/github-how-to-checkout-my-own-repository#5989998

• GitHub Desktop provides easy to use graphical interface to Git: https://desktop.github.com/

Source Code

https://github.com/particleincell/Starfish-LE
http://stackoverflow.com/questions/5989893/github-how-to-checkout-my-own-repository#5989998
https://desktop.github.com/

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

24

• I use Netbeans for the
development environment but
Eclipse should work just as well

• This image shows the package
layout

Netbeans

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

25

• Just as any Java program,
Starfish execution begins in a
function called “main”

• This function is defined in
Main.java located in package
main

• This function instantiates a new
object of type Starfish and then
calls that object’s start method.

Main

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

26

• This start method is located in Starfish.java
located in package starfish.core.common

• It starts by instantiating a LoggerModule. This
logger is how the rest of code prints
information and error messages

• Next the header with version and copyright
info is printed

• Next all default modules are registered

• Plugins are registered next, if any

• The modules are then initialized

• The code then reads file called starfish.xml
and performs commands as specified – this is
the “meat” of the simulation

• ExitModules let’s modules perform clean up
actions

• Finally, “Done” is printed to the screen

Start

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

27

• Starfish modules are stored in a HashMap
called modules. The accessor (key) is a string
identifying the module name. All modules are
derived from base class CommandModule

• RegisterModules is also defined in
Starfish.java

• As you can see, this function simply adds
(using put) various modules to the hash map
– Some modules are first instantiated into a member

variable – this is so other functions can use these
modules without going through the hash map

RegisterModules

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

28

• All modules extend from base class
CommandModule

– In starfish.core.common

• This base class defines five functions that need
to be overloaded as needed:

– process: called when command tag is
encountered in starfish.xml input file

– init: called by InitModules before simulation
main loop starts

– start: called at the start of the main loop

– finish: called at the end of the main loop

– exit: called by ExitModules just prior to code
termination

• Why two initialization functions?

– Some modules depend on others – for
instance material interactions module needs
material list to be initialized

Intro to Modules

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

29

• As an example, let’s take a look at the Note Module

• This module’s process function is called when
<note> tag is encountered in starfish.xml

• Only the process method does anything,
and that’s simply to call Log.message(..)
with the message given by
InputParser.getFirstChild(element)

– In this case this will be “Starfish Tutorial: Part 1”

• The argument to the process method of all
modules is the XML element for the
handled tag

– This element can contain many additional child tags
as well as attributes. InputParser class provides handy
accessor methods

Example: Note Module

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

30

Second Example: Solver

• We now consider a more complex example: the <solver> tag
– In SolverModule.java in starfish.core.solver

• InputParser.getValue/getInt/getDouble...
provide easy way to obtain data
regardless of whether it was defined as
an attribute (type) or child elements
(n0, Te0...)

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

31

• Starfish implements modularity using object oriented programming

• You already saw an example with the modules extending base CommandModule

• Another example is Solver module

• The string provided for “type” is used
to retrieve a SolverFactory from a hash map

• This factory then generates a solver object
that derives from the base Solver class

• At no point does the actual solver module
know (or care!) what type of a solver the
user specified

• Different solver types are registered
in init

• You may want to write a plugin to
register additional solvers

Solver Module

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

32

• The easiest way to extend Starfish
LE is using plugins
– This is in fact how the full version

Starfish code works

• Create a new project and add
starfish-LE as a dependency under
Libraries

• Define new “main” in which you
assemble an ArrayList of Plugin,
then pass this list to Starfish().start

• Register method of each plugin will
be called after RegisterModules
– Your plugin could for instance call

Plugins

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

33

• Here is actual example of the gas dynamics plugin from the full version
– It registers new material type, based on the diffusion equation

– Registers DSMC as new material interaction

– Also registers new collision cross-section sigma

Plugins

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

34

• The SolverModule contains function called updateFields

• This function is called by the Starfish main loop at every
time step. The function in turn calls update for the defined
solver type

• We will now take a look at the simplest solver used in PIC,

quasi neutral Boltzmann inversion, 𝜙 = 𝜙0 + 𝑘𝑇𝑒,0 ln
𝑛𝑖

𝑛0

• Defined in QNSolver.java in starfish.pic

• The factory reads in appropriate values
from the input file and instantiates
object of type QNSolver (derived from
Solver)

• It then returns this object

Solvers

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

35

• Starfish stores mesh-based quantities in object of type Field2D. This object defines functions for
interpolation and also getData which returns double[][] containing the actual node values.

• The domain module automatically generates fields to store charge density 𝜌 and potential 𝜙

• Each mesh node is also
classified as DIRICHLET,
OPEN, etc...

QN Solver

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

36

• The simulation is started by the process function of StarfishModule

– Handles <starfish> tag

• First calls start on all modules

• The simulation main loop then
starts

• The finish function is then called

Starfish Module

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

37

• The main loop performs the typical operations expected in a PIC/DSMC code:

– Mass is injected into the simulation domain

– Densities of different material species are computed at a new time step

– Interactions between different materials are considered

– Fields are updated to compute forces

– Restart data is saved as needed

– Averaging and file output is also performed as needed

• The above steps repeated until some stopping condition

– Maximum number of time steps is reached

– Simulation reaches steady state

Main Loop

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

38

• This is what it looks like in practice

Main Loop

/**simulation main loop*/

public void MainLoop()

{

Log.message("Starting main loop");

restart_module.load();

/*compute initial field*/

solver_module.updateFields();

while(time_module.hasTime())

{

/*add new particles*/

source_module.sampleSources();

/*update densities and velocities*/

materials_module.updateMaterials();

/*perform material interactions (collisions and the like)*/

interactions_module.performInteractions();

/*solve potential and recompute electric field*/

solver_module.updateFields();

/*save restart data*/

restart_module.save();

/*save animations*/

animation_module.save();

/*save average data*/

averaging_module.sample();

printStats();

/*advance time*/

time_module.advance();

}/*end of main loop*/

/*save average data*/

averaging_module.sample();

/*check if we have reached the steady state*/

if (!time_module.steady_state)

Log.warning("The simulation failed to reach

steady state!");

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

39

• The updateMaterials function is another example of modularity afforded by object
oriented programming

• While Starfish is mainly used for kinetic simulations, the code is not hardwired for this

• Even in a PIC simulation, we merely care about the density (and possibly
velocities/temperature) of different species, 𝜌 = 𝑖 𝑞𝑖𝑛𝑖

– The kinetic push of particles 𝑥𝑘+1 = 𝑥𝑘 + 𝑣𝑘+0.5Δ𝑡 is only an intermediary step to
compute 𝑛𝑘+1

• Starfish implements this abstraction in the sense that every material type implements an
update function which computes the new density, temperature, and bulk velocities at the
new time step

– For kinetic materials, this implies performing
the push followed by scatter

– For fluid materials, this may imply advancing
Navier-Stokes solutions forward by Δ𝑡

Materials

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

40

• Interaction between different species is
handled by InteractionModule

• Starfish-LE supports three types of
interactions: surface impact, chemistry,
and MCC

• Full version adds DSMC

• Surface impact is an interaction
between a material (kinetic or fluid) and
a surface boundary: example would be
surface recombination or sputtering

• Chemistry is a fluid-fluid type
interaction. Only the density fields (may
be computed from particles) come to
play and are used to compute rate
constants. Example would be ionization.

• MCC is a particle-fluid interaction. The
source material must be kinetic and the
target is not affected.

Material Interactions

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

41

• The division on the previous page is actually bit of a simplification. Material Interactions
are actually grouped into surface interactions and volume interactions. MCC, DSMC, and
Chemistry are subclasses of VolumeInteraction since they deal with effects within the
computational mesh (volume).

• Surface interactions are currently implemented only for kinetic materials and are
processed when particle hits a surface
– In KineticMaterial.java and Material.java

Surface Interactions

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

42

• Volume interactions instead handled by
MaterialInteractions.perfromInteraction.
This function called from the main loop.

• This functions iterates over an ArrayList
of volume interactions. New interactions
can be added using addInteraction (for
instance from a plugin)

• As an example of a volume interaction,
consider MCC shown on right

• Perform iterates over all particles and
computes collision probability from

𝑃 = 1 − exp −𝜎𝑣𝑟𝑒𝑙𝑛𝑎Δ𝑡

Volume Interactions

Starfish WebinarParticle In Cell Consulting LLC
particleincell.com, @particleincell

43

• Please visit https://www.particleincell.com/starfish/ for more information

• Don’t hesitate to contact me at lubos.brieda@particleincell.com if you have questions

• If anything here is not clear, I suggest you take one of my past or upcoming plasma
simulation courses: https://www.particleincell.com/courses/

Conclusion

https://www.particleincell.com/starfish/
mailto:lubos.brieda@particleincell.com
https://www.particleincell.com/courses/

