CTSP (Contamination Transport Simulation Program)




Overview

CTSP (Contamination Transport Simulation Program) is a program for simulating molecular and particulate contamination transport. The need to model contamination is commonly encountered in vacuum and aerospace industries. Plastics and other organic materials exposed to low pressures outgas unspent hydrocarbons which then deposit onto sensitive surfaces such as camera lenses or radiators. Other components may be sensitive to particulates. These are tiny dust particles arising from air pollution, garments, or flaking off paints. Particulates are present on all surfaces but can redistribute during vibrational events such as spacecraft launch or on-orbit deployments.

CTSP models the transport of molecular and particulate contaminants from their sources to the eventual settling locations in order to estimate the end of life cleanliness levels. The code utilizes a kinetic method in which the contaminants are represented by particles, which are advanced through small time steps. This allows the code to take into account aerodynamic, gravitational, or electrostatic forces. Unlike Monte Carlo ray tracing tools, CTSP concurrently simulates the entire contaminant population. This allows the end user to visualize the contaminant plume partial pressures and bulk streaming velocities. It also allows the code to simulate the transition rarefied gas regime such as chamber repress in which inter-molecular collisions become important. CTSP supports highly detailed, multi-million element surface meshes to represent the geometry. It also implements multiple contamination-specific material sources, including a detailed model for molecular outgassing and particulate generation. Molecular surface adhesion and desorption physics is governed by surface temperature and material activation energy.

Features

  • Three-dimensional simulation code specifically designed for the contamination control community
  • Supports complex geometries loaded in common formats such as OBJ, STL, Nastran, UNV, and TSS
  • Detailed model for molecular outgassing based on surface desorption and adsorption from the gas phase
  • Surface adhesion based on material activation energy and time-dependent surface temperature
  • Particulate generation per IEST-STD-1246D, ISO-14644-1, or tapelift data
  • Drifting Maxwellian and effusion sources to model venting of internal cavities
  • Support for external gravitational, aerodynamic, and electrostatic forces
  • All particles traced concurrently, allowing visualization of contaminant plume density, mean velocity, or pressure
  • Transition region can be modeled using Direct Simulation Monte Carlo (DSMC) collisions
  • Simulation results exported in VTK (ASCII or binary) or Tecplot format
  • Available results include time-dependent surface contaminant concentration, histograms of surface particulate population, particle traces, particle scatter plots, and volume data.
  • Runs in parallel using multithreading and MPI

Licensing

Single-user licenses are available to US customers. Please contact us for pricing information.

A handout is available here: CTSP-flyer.pdf